IC Phoenix
 
Home ›  TT28 > TDA9556,7.5ns 3 Channel High Voltage Video Amplifier
TDA9556 Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
TDA9556STN/a700avai7.5ns 3 Channel High Voltage Video Amplifier


TDA9556 ,7.5ns 3 Channel High Voltage Video AmplifierELECTRICAL CHARACTERISTICS . . . . ........ ....... .. .. ....... 56 THEORY OF OPERATION . . . . ..
TDA9614H ,Audio processor for VHS hi-fi and linear audio
TDA9614H ,Audio processor for VHS hi-fi and linear audio
TDA9614H ,Audio processor for VHS hi-fi and linear audio
TDA9725 ,Y/C automatic adjustment processor VHS standard
TDA9725 ,Y/C automatic adjustment processor VHS standard
TK11128S ,VOLTAGE REGULATOR WITH ON/OFF SWITCH
TK11130S ,VOLTAGE REGULATOR WITH ON/OFF SWITCH
TK11131S ,VOLTAGE REGULATOR WITH ON/OFF SWITCH
TK11132MCL ,VOLTAGE REGULATOR WITH ON/OFF SWITCH
TK11132SCL ,VOLTAGE REGULATOR WITH ON/OFF SWITCH
TK11133MCL ,VOLTAGE REGULATOR WITH ON/OFF SWITCH


TDA9556
7.5ns 3 Channel High Voltage Video Amplifier
October 2000 1/16
Version 2.0
TDA9556

7.5 NS TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER
PRODUCT PREVIEW
FEATURES
Triple-channel video amplifier Pinningfor easy PCB layout Supports DC coupling (optimum cost saving)
and AC coupling applications. Built-in Voltage Gain: 19.3 (Typ.) Rise and Fall Times: 7.5ns (Typ.) Bandwidth: 50MHz (Typ.) Very low stand-by power consumption 80V Output dynamic range Supply voltage: 110V Perfectly matched with the TDA9210
preamplifier
DESCRIPTION

The TDA9556isa triple-channel video amplifier
designed in BCD technology (Bipolar/CMOS/
DMOS) ableto drive the3 cathodesofa CRT
monitor.
Perfectly matched with the ST Preamplifier
TDA9210,it providesa high performance, and
very cost effective DC coupling system.
PIN CONNECTIONS
CLIPWATT11
ORDER CODE:
TDA9556
(Plastic Package) OUT1
OUT2
OUT3
GNDP
GNDA
IN3DD
GNDSCC
IN2
IN1
Table of Contents
2/16 BLOCK DIAGRAM................................................... ..... ....3 PIN CONNECTIONS... .... .... ....... ...... ..... ......... .................. ...3 ABSOLUTE MAXIMUM RATINGS ..... ....... ... ........... ....... ...... ..... ....4 THERMAL DATA........ .................. ..... ... ............. ..............4 ELECTRICAL CHARACTERISTICS............... ....... ..... .............. ......5 THEORY OF OPERATION................... ..... ......... .................. ...7
6.1 -General................ ..... ....... ... ........... ....... .... ....... ....7
6.2 -Howto choose the high supply voltage value (VDD)....... ............ ...........7
6.3 -Amplifier gain and cut-off adjustment.... ..... .............. ....... ...... ......8 ARCING PROTECTION............................ .... .... ........... .........8 VIDEO RESPONSE OPTIMIZATION.. ...... ..... .............. ....... ...... ......9
8.1 Supply decoupling.... ........................... ............ ....... ......9
8.2 -Tracks................................ .... ...... ................. ......9
8.3 -Network adjustment.............................................. ..... ....9 POWER DISSIPATION................... ....... ..... ....... ...... ....... ..... 10 TYPICAL PERFORMANCE CHARACTERISTICS. ..... ....... ....... .... ....... ... 11 PACKAGE MECHANICAL DATA.............. ..... ....... ........... ....... ... 14
TDA9556
3/16 BLOCK DIAGRAM PIN CONNECTIONS
Pin Name Function
IN1 Video Input-channel1 IN2 Video Input-channel2 VCC Low Supply Voltage IN3 Video Input-channel3 GNDA Ground Analogic (signal) GNDS Ground Substrate VDD High Supply Voltage GNDP Ground Power OUT3 Output-channel3 OUT2 Output-channel2 OUT1 Output-channel1
TDA9556
2 411
OUT3GNDP OUT2OUT1
VDD
VCC
IN3IN2IN1REF
GNDA
GNDS
VDD GNDP VDD GNDP
TDA9556
4/16 ABSOLUTE MAXIMUM RATINGS THERMAL DATA
Symbol Parameter Value Unit

VDD High supply voltage 120 V
VCC Low supply voltage 17 V
VESD
ESD susceptibility
Human Body Model (100pF discharged through 1.5KΩ)
EIAJ norm (200pF discharged through 0Ω)
IOD Output source current (pulsed< 50μs) 80 mA
IOG Output sink current (pulsed< 50μs) 80 mAIN Max Maximum Input Voltage 15 V
VINMin Minimum Input Voltage - 0.5 V Junction Temperature 150 °C
TSTG Storage Temperature -20+ 150 °C
Symbol Parameter Value Unit

Rth(j-c) Junction-Case Thermal Resistance (Max.) 3 °C/W
Rth (j-a) Junction-Ambient Thermal Resistance (Typ.) 35 °C/W
TDA9556
5/16 ELECTRICAL CHARACTERISTICS
Note1:
The TDA 9556 goes into stand-by mode when Vccis switchedoff (<1.5V). stand-by mode, Voutis setto low level.
Note2:
Matching measured between each channel.
Note3:
Pulsed current width< 50μs
Symbol Parameter Test Conditions Min. Typ Max Unit
SUPPLY parameters (VCC= 12V, VDD= 110V, Tamb=25
°C, unless otherwise specified)
VDD High supply voltage 20 110 115 VCC Low supply voltage 10 12 15 V
IDD VDD supply current VOUT= 50V 25 mA
IDDS VDD stand-by supply current VCC: switchedoff (<1.5V)
VOUT: low (Note1) 60 μA
ICC VCC supply current VOUT= 50V 60 mA
STATIC parameters (VCC= 12V, VDD= 110V, Tamb=25
°C)
dVOUT/dVDD High Voltage supply rejection VOUT= 50V 0.5 %
dVOUT/dT Output Voltage drift versus temperature VOUT= 80V 15 mV/°C
dΔV OUT/dT Output voltage matching versus
temperature (Note2) V OUT= 80V 5 mV/°CIN Video Input Resistor V OUT= 50V 2 kΩ
VSATH Output Saturation Voltageto Supply I0 =-60mA (Note3) VDD-6.5 V
VSATL Output Saturation Voltageto GND I0 =60mA (Note3) 11 V Video Gain VOUT= 50V 19.3 Linearity Error 17VREF Internal Voltage Reference 5.5 V
TDA9556
6/16
ELECTRICAL CHARACTERISTICS (continued)
Note4:
Matching measured between each channel.
Figure1. AC test circuit
Symbol Parameter Test Conditions Min. Typ Max Unit
DYNAMIC parameters (see
Figure1)
OS1 Overshoot, Whiteto Black transition 5 %
OS2 Overshoot, Blackto White transition 1 %
ΔVG Low frequency gain matching (Note4) VDC= 50V, f=1MHz 5 % Bandwidthat -3dB VDC=50V, ΔV=20VPP 50 MHz Rise time VDC=50V, ΔV=40VPP 7.2 ns Fall time VDC=50V, ΔV=40VPP 7.9 ns
tSET 2.5% Settling time VDC=50V, ΔV=40VPP 15 ns
CTL Low frequency CrosstalkDC =50V,ΔV=20VPP=1 MHz 50 dB
CTH High frequency Crosstalk
VDC=50V,ΔV=20VPP= 20MHz 32 dB
TDA9556
75Ω CL=8pF
GND
OUT RP= 200Ω3 VDDVCC
110V12VVDC
VREF 8
TDA9556
7/16 THEORY OF OPERATION
6.1- General

The TDA9556isa three-channel video amplifier
supplied bya low supply voltage: VCC (typ.12V)
anda high supply voltage: VDD (upto 115V).
The high valuesofVDD supplying the amplifier out-
put stage allow direct controlof the CRT cathodes
(DC coupling mode). DC coupling mode, the application schematicis
very simple and onlya few external components
are neededto drive the cathodes.In particular,
thereis no needof the DC-restore circuitry which usedin classical AC coupling applications.
The output voltage range is wide enough
(Figure2)to provide simultaneously: Cut-off adjustment (typ. 25V) Video contrast (typ.upto 40V), Brightness (withthe remaining voltage range). normal operation, the output video signal must
remain inside the linear region whatever the cut-
off/ brightness/ contrast adjustmentis.
Figure2. Output signal, level adjustments
6.2- Howto choose the high supply voltage value(VDD)

The VDD high supply voltage mustbe chosen care-
fully.It mustbe high enoughto provide the neces-
sary video adjustment but setto minimum valueto
avoid unecessary power dissipation.
Example:
The following example shows how the optimumDD voltage valueis determined: Cut-off adjustment range (B): 25V Max contrast (D): 40V
Case1:
10V Brightness (C) adjustedby the preamplifier:
VDD =A +B +C+D+EDD= 15V+ 25V+ 10V+ 40V+ 17V= 107V
Case2:
10V Brightness (C) adjustedby the G1 anode:
VDD =A +B +D+E
VDD= 15V+ 25V+ 40V+ 17V= 97V
(A) Top Non-Linear Region
Linear
region
VDD

(E) Bottom Non-Linear Region
GND

Blanking pulse
Video Signal
(B) Cut-off Adjust. (25V Typ.)
(C) Brightness Adjust. (10V Typ.)
(D) Contrast Adjust. (40V Typ.)
15V
17V
TDA9556
8/16
6.3- Amplifier gain and cut-off adjustment
very simplified schematic of each TDA9556
channelis shownin Figure3.
The feedback netof each channelis integrated
witha built-in voltage gainof 19.3 (40k/2k).
The output voltage VOUTis givenby the following
formula: OUT= (VG+1)x VREF- (VGxVIN)
for VG= 19.3 and VREF= 5.5V, we have OUT= 111.6- 19.3xVIN
Figure3. Simplified schematicof one channel ARCING PROTECTION
the amplifieroutputs are connectedto the CRT
cathodes, special attention mustbe givento por-
tect them against possible arcing inside the CRT.
Protection must be considered when starting the
designof the video CRT board.It should always implemented before startingto adjust the dy-
namic video responseof the system.
The arcing network that we recommend (see
Figure4) provides efficient protection without de-
teriorating the amplifier video performances.
The total resistance value between the amplifier
and the CRT cathode (R10+R11) should not be
less than 300Ω.
Spark gap diodes are strongly recommended for
protection against arcing.
Figure4. Arcing protection network (one channel)

40k
GNDDD
OUTINREF
R11
R29
10Ω
150Ω/0.5W
C18
100nF
C24
4.7μF/150V
C12
100nF/250V
R19
33Ω
R10
150Ω/0.5W
0.39μH
D12
FDH400
TDA9556

High Voltage (90-110V)
VDD
GND
OUT
Spark gap*)
(*):Tobe connectedas closeas possibleto the device.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED