IC Phoenix
 
Home ›  SS105 > STM1001LWX6F-STM1001RWX6F-STM1001SWX6F-STM1001TWX6F,Reset Circuit
STM1001LWX6F-STM1001RWX6F-STM1001SWX6F-STM1001TWX6F Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
STM1001LWX6FSTN/a2729avaiReset Circuit
STM1001RWX6FSTMN/a10000avaiReset Circuit
STM1001RWX6FST,STN/a10000avaiReset Circuit
STM1001RWX6FSTN/a10000avaiReset Circuit
STM1001SWX6FSTN/a3000avaiReset Circuit
STM1001SWX6FST,STN/a126000avaiReset Circuit
STM1001SWX6FSTMN/a10000avaiReset Circuit
STM1001TWX6FSTN/a3000avaiReset Circuit


STM1001SWX6F ,Reset CircuitBlock Diagram . . 3Figure 5. Hardware Hookup . . . . . . . 3OPERATION . . . . ..
STM1001SWX6F ,Reset CircuitAbsolute Maximum Ratings 8DC and AC PARAMETERS . . 8Table 3. Operating and AC Measureme ..
STM1001SWX6F ,Reset CircuitFEATURES SUMMARY■ PRECISION MONITORING OF 3V, 3.3V, and Figure 2. Package5V SUPPLY VOLTAGES■ OPEN D ..
STM1001TWX6F ,Reset CircuitSTM1001Reset Circuit
STM1061N17WX6F ,Low power voltage detectorAbsolute Maximum Ratings 13Table 4. Operating and AC Measurement Conditions . . . 14Table ..
STM1061N19WX6F ,Low power voltage detectorBlock Diagram . . . 6Figure 6. STM1061N Active-Low, Open Drain Hardware Hookup . . . . 6Figur ..
SY10ELT22LZG , 3.3V DUAL TTL-to-DIFFERENTIAL PECL TRANSLATOR
SY10ELT22LZG , 3.3V DUAL TTL-to-DIFFERENTIAL PECL TRANSLATOR
SY10ELT22ZG , DUAL TTL-to-DIFFERENTIAL PECL TRANSLATOR
SY10ELT22ZG , DUAL TTL-to-DIFFERENTIAL PECL TRANSLATOR
SY10ELT23LZC , 3.3V, DUAL DIFFERENTIAL LVPECL-TO-LVTTL TRANSLATOR
SY10ELT23LZC , 3.3V, DUAL DIFFERENTIAL LVPECL-TO-LVTTL TRANSLATOR


STM1001LWX6F-STM1001RWX6F-STM1001SWX6F-STM1001TWX6F
Reset Circuit
1/13November 2004
STM1001

Reset Circuit
FEATURES SUMMARY
STM1001
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Figure 1. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 2. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 3. SOT23-3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Figure 5. Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Negative-Going VCC Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Valid /RST Output Down to VCC = 0V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
TYPICAL OPERATING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Figure 6. Supply Current vs. Temperature, L/M/R/S/T (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 7. Power-down Reset Delay vs. Temperature - VOD = VTH – VCC (L/M). . . . . . . . . . . . . . . .5
Figure 8. Power-down Reset Delay vs. Temperature - VOD = VTH – VCC (R/S/T) . . . . . . . . . . . . . .6
Figure 9. Power-up trec vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 10.Normalized Reset Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 11.Max Transient Duration NOT Causing Reset Pulse vs. Reset Comparator Overdrive . . .7
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 12.AC Testing Input/Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 4. DC and AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Figure 13.SOT23-3 – 3-lead Small Outline Transistor Package Outline . . . . . . . . . . . . . . . . . . . . .10
Table 5. SOT23-3 – 3-lead Small Outline Transistor Package Mechanical Data . . . . . . . . . . . . .10
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Table 6. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 7. Marking Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Table 8. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3/13
STM1001
SUMMARY DESCRIPTION

The STM1001 MICROPROCESSOR RESET Cir-
cuit is a low-power supervisory device used to
monitor power supplies. It performs a single func-
tion: asserting a reset signal whenever the VCC
supply voltage drops below a preset value and
keeping it asserted until VCC has risen above the
preset threshold for a minimum period of time
(trec).
Figure 4. Block Diagram

Note:1. Open Drain
Figure 5. Hardware Hookup

Note:1. RST output requires pull-up resistor.
STM1001
OPERATION
Reset Output

The STM1001 MICROPROCESSOR RESET
CIRCUIT asserts a reset signal to the MCU when-
ever VCC goes below the reset threshold (VRST).
RST is guaranteed valid down to VCC =1V (0° to
70°C).
During power-up, once VCC exceeds the reset
threshold an internal timer keeps RST low for the
reset time-out period, trec. After this interval, RST
returns high.
If VCC drops below the reset threshold, RST goes
low. Each time RST is asserted, it stays low for at
least the reset time-out period. Any time VCC goes
below the reset threshold, the internal timer clears.
The reset timer starts when VCC returns above the
reset threshold. The active-low reset (RST) is an
open drain output.
Negative-Going VCC Transients

The STM1001 is relatively immune to negative-go-
ing VCC transients (glitches). Figure 11., page7
shows typical transient duration versus reset com-
parator overdrive (for which the STM1001 will
NOT generate a reset pulse). The graph was gen-
erated using a negative pulse applied to VCC,
starting at 0.5V above the actual reset threshold
and ending below it by the magnitude indicated
(comparator overdrive). The graph indicates the
maximum pulse width a negative VCC transient
can have without causing a reset pulse. As the
magnitude of the transient increases (further be-
low the threshold), the maximum allowable pulse
width decreases. Any combination of duration and
overdrive which lies under the curve will NOT gen-
erate a reset signal. Typically, a VCC transient that
goes 100mV below the reset threshold and lasts
20µs or less will not cause a reset pulse. A 0.1µF
bypass capacitor mounted as close as possible to
the VCC pin provides additional transient immunity.
Valid /RST Output Down to VCC = 0V

When VCC falls below 1V, the RST output no long-
er sinks current, but becomes an open circuit. In
most systems this is not a problem, as most MCUs
do not operate below 1V. However, in applications
where RST output must be valid down to 0V, a
pull-down resistor may be added to hold the RST
output low. This resistor must be large enough to
not load the RST output, and still be small enough
to pull the output to ground. A 100KΩ resistor is
recommended.
5/13
STM1001
STM1001
Figure 8. Power-down Reset Delay vs. Temperature - VOD = VTH – VCC (R/S/T)
Figure 9. Power-up trec vs. Temperature
7/13
STM1001
Figure 10. Normalized Reset Threshold vs. Temperature
Figure 11. Max Transient Duration NOT Causing Reset Pulse vs. Reset Comparator Overdrive
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED