IC Phoenix
 
Home ›  MM88 > MAX9985ETX+-MAX9985ETX+T,Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAX9985ETX+-MAX9985ETX+T Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
MAX9985ETX+ |MAX9985ETXMAXIMN/a20avaiDual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAX9985ETX+ |MAX9985ETXMAXINN/a11avaiDual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAX9985ETX+TMAXIMN/a202avaiDual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch


MAX9985ETX+T ,Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/SwitchELECTRICAL CHARACTERISTICS(Using the Typical Application Circuit, no input RF or LO signals applied ..
MAX9986AETP , SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAX9986AETP , SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAX9986AETP+ ,SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/SwitchApplicationsOrdering Information850MHz WCDMA Base StationsPKGPART TEMP RANGE PIN-PACKAGEGSM 850/GSM ..
MAX9986AETP+ ,SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/SwitchFeaturesThe MAX9986A high-linearity downconversion mixer ♦ 815MHz to 1000MHz RF Frequency Rangeprov ..
MAX9986AETP+T ,SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/SwitchELECTRICAL CHARACTERISTICS(MAX9986A Typical Application Circuit, V = +4.75V to +5.25V, RF and LO po ..
MB89713 , CMOS 8-BIT SINGLE-CHIP FLEXIBLE MICROCONTROLLER
MB89855 ,8-bit Proprietary MicrocontrollerFEATURES• Various package optionsQFP package (80 pins): MB89860SDIP package (64 pins): MB89850• Hig ..
MB89855R ,8-bit Proprietary MicrocontrollerFEATURES• Various package optionsSDIP package (64 pins)/QFP package (64 pins)• High-speed processin ..
MB89875 ,8-bit Proprietary MicrocontrollerFEATURES2•F MC-8L family CPU core• Dual-clock control system• Maximum memory space: 64 Kbytes• Mini ..
MB89935A ,8-bit Proprietary MicrocontrollerFUJITSU SEMICONDUCTORDS07-12541-2EDATA SHEET8-bit Proprietary MicrocontrollerCMOS2F MC-8L MB89930A ..
MB89935B ,8-bit Proprietary MicrocontrollerFUJITSU SEMICONDUCTORDS07-12541-2EDATA SHEET8-bit Proprietary MicrocontrollerCMOS2F MC-8L MB89930A ..


MAX9985ETX+-MAX9985ETX+T
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch

EVALUATION KIT AVAILABLE
General Description

The MAX9985 high-linearity, dual-channel downconver-
sion mixer is designed to provide approximately 6dB
gain, +28.5dBm of IIP3, and 10.5dB of noise figure (NF)
ideal for diversity receiver applications. With a 700MHz
to 1000MHz RF frequency range and a 570MHz to
865MHz LO frequency range, this mixer is ideal for low-
side LO injection architectures. In addition, the broad
frequency range makes the MAX9985 ideal for GSM
850/950, 2G/2.5G EDGE, WCDMA, cdma2000®, and
iDEN®base-station applications.
The MAX9985 dual-channel downconverter achieves a
high level of component integration. The MAX9985 inte-
grates two double-balanced active mixer cores, two LO
buffers, a dual-input LO selectable switch, and a pair of
differential IF output amplifiers. In addition, integrated
on-chip baluns at the RF and LO ports allow for single-
ended RF and single-ended LO inputs. The MAX9985
requires a typical 0dBm LO drive. Supply current is
adjustable up to 400mA.
The MAX9985 is available in a 36-pin thin QFN pack-
age (6mm x 6mm) with an exposed paddle. Electrical
performance is guaranteed over the extended tempera-
ture range, from TC= -40°C to +100°C.
Applications

850MHz WCDMA Base Stations
GSM 850/GSM 950, 2G/2.5G EDGE Base
Stations
cdmaOne™ and cdma2000 Base Stations
iDEN Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Digital and Spread-Spectrum Communication
Systems
Microwave Links
Features
700MHz to 1000MHz RF Frequency Range570MHz to 865MHz LO Frequency Range50MHz to 250MHz IF Frequency Range6dB Typical Conversion Gain10.5dB Typical Noise Figure+28.5dBm Typical Input IP3+16.2dBm Typical Input 1dB Compression Point77dBc Typical 2RF-2LO Spurious Rejection at
PRF= -10dBm
Dual Channels Ideal for Diversity Receiver
Applications
47dB Typical Channel-to-Channel Isolation-3dBm to +3dBm LO DriveIntegrated LO BufferInternal RF and LO Baluns for Single-Ended
Inputs
Built-In SPDT LO Switch with 43dB LO1-to-LO2
Isolation and 50ns Switching Time
Pin-Compatible with MAX9995 1700MHz to
2200MHz Mixer
Lead(Pb)-Free Package
Ordering Information

*EP = Exposed paddle.
T = Tape-and-reel package.
+Denotes lead(Pb)-free and RoHS compliant.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
iDEN is a registered trademark of Motorola, Inc.
cdmaOne is a trademark of CDMA Development Group.
PARTTEMP RANGEPIN-PACKAGEPKG
CODE

MAX9985ETX+- 40°C to + 100°C
36 Thi n QFN- E P *
(6mm x 6mm),
lead free, bulk
T3666-2
MAX9985ETX+T- 40°C to + 100°C
36 Thi n QFN- E P *
(6mm x 6mm),
lead free, T/R
T3666-2
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS

(Using the Typical Application Circuit, no input RF or LO signals applied, VCC= 4.75V to 5.25V, TC= -40°C to +85°C. Typical values
are at VCC= 5.0V, TC= +25°C, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +5.5V
LO1, LO2 to GND...............................................................±0.3V
Any Other Pins to GND...............................-0.3V to (VCC+ 0.3V)
RFMAIN, RFDIV, and LO_ Input Power..........................+20dBm
RFMAIN, RFDIV Current (RF is DC shorted to GND through
balun)...............................................................................50mA
Continuous Power Dissipation (Note 1).............................6.75W
Operating Case Temperature Range (Note 2)......-40°C to +100°C
Junction Temperature......................................................+150°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10s).................................+300°C
Soldering Temperature (reflow).......................................+260°C
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS

Supply VoltageVCC4.7555.25V
Total supply current (see Table 1 for lower
current settings)400440
VCC (pin 16)80
VCC (pin 30)80
IFM+/IFM- (total of both)105
Supply CurrentICC
IFD+/IFD- (total of both)105
LOSEL Input High VoltageVIH2V
LOSEL Input Low VoltageVIL0.8V
LOSEL Input CurrentIIH and IIL-10+10µA
Note 1:
Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to PCB. See the Application Information section for details. The junction
temperature must not exceed +150°C.
Note 2:
TCis the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
Note 3:
Junction temperature TJ= TA+ (θJAx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 4:
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.
PACKAGE THERMAL CHARACTERISTICS

Junction-to-Ambient Thermal Resistance (θJA)
(Notes 3, 4)...................................................................38°C/W
Junction-to-Board Thermal Resistance (θJB)................12.2°C/W
Junction-to-Case Thermal Resistance (θJC)
(Notes 1, 4)..................................................................7.4°C/W
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS

RF FrequencyfRF(Note 6)7001000MHz
LO FrequencyfLO(Note 6)570865MHz
IF FrequencyfIFIF matching components affect the IF
frequency range (Note 6)50250MHz
LO DrivePLO(Note 7)-3+3dBm
(Note 8)4.567.5Conversion GainGCTC = +100°C5.4dB
Gain Variation over Temperature-0.012dB/°C
Conversion Gain Flatness
Fl atness over any one of thr ee fr equency b and s:
fRF = 824MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
±0.1dB
Noise Figure, Single SidebandNFfIF = 190MHz, no blockers present (Note 7)10.513dB
Noise Figure under Blocking
Condition
+11dBm blocker tone applied to RF port at
961MHz, fRF = 860MHz, fLO = 670MHz,
fIFDESIRED = 190MHz,
fBLOCKER = 291MHz (Notes 7, 9)26dB
Input Compression PointP1dB16.2dBm
Output Compression PointOP1dB18.521.2dBm
PBLOCKER = +8dBm0.1Small-Signal Compression under
Blocking Conditions
PRF = -5dBm, fRF =
870MHz, fBLOCKER
= 871MHzPBLOCKER = +11dBm0.25
Third-Order Input Intercept PointIIP3
fRF1-fRF2 = 1MHz,
fIF = 100MHz,
PRF = -5dBm/toneTC = +100°C28.8
dBm
Third-Order Input Intercept Point
Variation over Temperature-0.01dB/°C
Third-Order Output Intercept
PointOIP3PRF = -5dBm/tone, fIF = 100MHz,
fRF1-fRF2 = 1MHz (Note 7)32.034.5dBm
PRF = -10dBm (Note 7)6377
PRF = -10dBm,
TC = +100°C78
PRF = -5dBm (Note 7)58722RF-2LO Spur2 x 2
fRF = 870MHz,
fLO = 770MHz,
fSPUR = 820MHz
PRF = -5dBm,
TC = +100°C73
dBc
PRF = -10dBm (Note 7)7085
PRF = -10dBm,
TC = +100°C87.3
PRF = -5dBm (Note 7)60753RF-3LO Spur3 x 3
fRF = 870MHz,
fLO = 770MHz,
fS P U R = 803.3M H z
PRF = -5dBm,
dBc
AC ELECTRICAL CHARACTERISTICS

(Using the Typical Application Circuit, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ωsources, PLO= -3dBm to +3dBm,
PRF= -5dBm, fRF= 820MHz to 920MHz, fLO= 670MHz to 865MHz, fIF= 100MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at
VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 870MHz, fLO= 770MHz, fIF= 100MHz, TC= +25°C, unless otherwise noted.) (Note 5)
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS

LO1-to-LO2 Port Isolation
PLO1 = +3dBm, PLO2 = +3dBm,
fLO1-fLO2 = 1MHz, PRF = -5dBm,
fIF = 100MHz (Notes 7, 10)43dB
Maximum LO Leakage at RF Port-40-30dBmaxi m um 2LO Leakag e at RF P or t-45-20dBm
-30-20Maximum LO Leakage at IF PortTC = +100°C-30.3dBm45Minimum RF-to-IF IsolationTC = +100°C49.5dB47
Minimum Channel-to-Channel
Isolation
PRF = -10dBm, RFMAIN (RFDIV)
power measured at IFDIV
(IFMAIN), relative to IFMAIN
(IFDIV), all unused ports
terminated to 50Ω
TC =
+100°C47.5
LO Switching Time50% of LOSEL to IF settled within 2 degrees
(Note 7)0.051µs
RF Input Impedance50Ω
LO Input Impedance50Ω
IF Output ImpedanceDifferential200Ω
RF Input Return LossLO on and IF terminated24dB
LO port selected35LO Input Return LossLO port unselected36dB
IF Return LossRF terminated in 50Ω20dB
Note 5:
All limits reflect losses of external components. Output measurements taken at IF outputs of the Typical Application Circuit.
Note 6:
Performance is guaranteed for fRF= 820MHz to 920MHz, fLO= 670MHz to 865MHz, and fIF= 100MHz. Operation outside
this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics.
Note 7:
Guaranteed by design and characterization.
Note 8:
Performance at TC= -40°C is guaranteed by design.
Note 9:
Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer including the LO noise, as defined in Maxim Application Note 2021.
Note 10:
Measured at IF port at IF frequency. LOSEL may be in any logic state.
AC ELECTRICAL CHARACTERISTICS (continued)

(Using the Typical Application Circuit, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ωsources, PLO= -3dBm to +3dBm,
PRF= -5dBm, fRF= 820MHz to 920MHz, fLO= 670MHz to 865MHz, fIF= 100MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at
VCC= 5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 870MHz, fLO= 770MHz, fIF= 100MHz, TC= +25°C, unless otherwise noted.) (Note 5)
Typical Operating Characteristics
(Using the Typical Application Circuit, VCC= 5.0V, PLO= 0dBm, PRF= -5dBm, fRF> fLO, fIF= 100MHz, TC= +25°C, unless other-
wise noted.)
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch

CONVERSION GAIN vs. RF FREQUENCY
MAX9985 toc01
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)TC = +85°CTC = +25°C
TC = -30°C
CONVERSION GAIN vs. RF FREQUENCY
MAX9985 toc02
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
PLO = -3dBm, 0dBm, +3dBm
CONVERSION GAIN vs. RF FREQUENCY
MAX9985 toc03
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX9985 toc04
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
TC = -30°C
TC = +25°C
TC = +85°CPRF = -5dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX9985 toc05
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
PLO = -3dBm, 0dBm, +3dBm
PRF = -5dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX9985 toc06
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
VCC = 5.0VVCC = 4.75V
VCC = 5.25V
PRF = -5dBm/TONE
MAX9985 toc07
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
NOISE FIGURE vs. RF FREQUENCY

TC = -30°C
TC = +25°C
TC = +85°C
MAX9985 toc08
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
NOISE FIGURE vs. RF FREQUENCY

PLO = -3dBm, 0dBm, +3dBm
MAX9985 toc09
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
NOISE FIGURE vs. RF FREQUENCY

VCC = 4.75VVCC = 5.0V
VCC = 5.25V
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
Typical Operating Characteristics (continued)

(Using the Typical Application Circuit, VCC= 5.0V, PLO= 0dBm, PRF= -5dBm, fRF> fLO, fIF= 100MHz, TC= +25°C, unless other-
wise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX9985 toc10
RF FREQUENCY (MHz)
2RF-2LO RESPONSE (dBc)
PRF = -5dBm
TC = -30°C
TC = +25°C
TC = +85°C
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX9985 toc11
RF FREQUENCY (MHz)
2RF-2LO RESPONSE (dBc)
PRF = -5dBm
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX9985 toc12
RF FREQUENCY (MHz)
2RF-2LO RESPONSE (dBc)
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX9985 toc13
RF FREQUENCY (MHz)
3RF-3LO RESPONSE (dBc)
PRF = -5dBm
TC = -30°C
TC = +85°C
TC = +25°C
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX9985 toc14
RF FREQUENCY (MHz)
3RF-3LO RESPONSE (dBc)
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX9985 toc15
RF FREQUENCY (MHz)
3RF-3LO RESPONSE (dBc)
PRF = -5dBm
VCC = 5.25V
VCC = 4.75VVCC = 5.0V
INPUT P1dB vs. RF FREQUENCY
MAX9985 toc16
RF FREQUENCY (MHz)
INPUT P
1dB
(dBm)
TC = +25°CTC = -30°C
TC = +85°C
INPUT P1dB vs. RF FREQUENCY
MAX9985 toc17
RF FREQUENCY (MHz)
INPUT P
1dB
(dBm)
PLO = -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
MAX9985 toc18
RF FREQUENCY (MHz)
INPUT P
1dB
(dBm)
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
Typical Operating Characteristics (continued)

(Using the Typical Application Circuit, VCC= 5.0V, PLO= 0dBm, PRF= -5dBm, fRF> fLO, fIF= 100MHz, TC= +25°C, unless other-
wise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
MAX9985 toc19
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
TC = -30°C, +25°C, +85°C
CHANNEL ISOLATION vs. RF FREQUENCY
MAX9985 toc20
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
PLO = -3dBm, 0dBm, +3dBm
CHANNEL ISOLATION vs. RF FREQUENCY
MAX9985 toc21
RF FREQUENCY (MHz)
CHANNEL ISOLATION (dB)
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX9985 toc22
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
TC = +85°C
TC = +25°C
TC = -30°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
MAX9985 toc23
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX9985 toc24
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX9985 toc25
RF-TO-IF ISOLATION (dB)
TC = +85°C
TC = -30°C
TC = +25°C
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX9985 toc26
RF-TO-IF ISOLATION (dB)PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX9985 toc27
RF-TO-IF ISOLATION (dB)VCC = 4.75V, 5.0V, 5.25V
MAX9985
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
Typical Operating Characteristics (continued)

(Using the Typical Application Circuit, VCC= 5.0V, PLO= 0dBm, PRF= -5dBm, fRF> fLO, fIF= 100MHz, TC= +25°C, unless other-
wise noted.)
LO LEAKAGE AT RF PORT
vs.LO FREQUENCY
MAX9985 toc28
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
TC = +85°C
TC = -30°CTC = +25°C
LO LEAKAGE AT RF PORT
vs.LO FREQUENCY
MAX9985 toc29
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs.LO FREQUENCY
MAX9985 toc30
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
VCC = 4.75V, 5.0V, 5.25V
2LO LEAKAGE AT RF PORT
vs.LO FREQUENCY
MAX9985 toc31
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
TC = +85°C
TC = -30°C
TC = +25°C
2LO LEAKAGE AT RF PORT
vs.LO FREQUENCY
MAX9985 toc32
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
2LO LEAKAGE AT RF PORT
vs.LO FREQUENCY
MAX9985 toc33
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)VCC = 4.75V, 5.0V, 5.25V
LO SWITCH ISOLATION
vs. RF FREQUENCY
MAX9985 toc34
LO SWITCH ISOLATION (dB)
TC = +85°C
TC = -30°C
TC = +25°C
LO SWITCH ISOLATION
vs. RF FREQUENCY
MAX9985 toc35
LO SWITCH ISOLATION (dB)
PLO = -3dBm, 0dBm, 3dBm
LO SWITCH ISOLATION
vs. RF FREQUENCY
MAX9985 toc36
LO SWITCH ISOLATION (dB)
VCC = 4.75V, 5.0V, 5.25V
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED