IC Phoenix
 
Home ›  MM84 > MAX9117EXK-T,SC70, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference
MAX9117EXK-T Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
MAX9117EXK-T |MAX9117EXKTMAXN/a15avaiSC70, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference


MAX9117EXK-T ,SC70, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without ReferenceApplications2-Cell Battery Monitoring/ManagementOrdering InformationUltra-Low-Power SystemsTEMP PIN ..
MAX9118EXK+ ,SC70, 1.6V, Nanopower, Beyond-the-Rails Comparators With/Without Referencefeatures make the MAX9117–MAX9120 family of♦ Guaranteed to Operate Down to +1.6Vcomparators ideal f ..
MAX9118EXK+T ,SC70, 1.6V, Nanopower, Beyond-the-Rails Comparators With/Without ReferenceFeaturesThe MAX9117–MAX9120 nanopower comparators in ♦ Space-Saving SC70 Package (Half the Size ofs ..
MAX9118EXK-T ,SC70 / 1.8V / Nanopower / Beyond-the-Rails Comparators With/Without ReferenceFeaturesThe MAX9117–MAX9120 nanopower comparators in Space-Saving SC70 Package (Half the Size ofsp ..
MAX9119EXK+T ,SC70, 1.6V, Nanopower, Beyond-the-Rails Comparators With/Without ReferenceELECTRICAL CHARACTERISTICS—MAX9117/MAX9118 (with REF)(V = +5V, V = 0V, V = V , T = -40°C to +85°C, ..
MAX9119EXK-T ,SC70 / 1.8V / Nanopower / Beyond-the-Rails Comparators With/Without ReferenceELECTRICAL CHARACTERISTICS—MAX9117/MAX9118(V = +5V, V = 0V, V = V , T = -40°C to +85°C, unless othe ..
MB88344 ,8-Bit D/A Converter with Operational Amplifier Output BuffersFUJITSU SEMICONDUCTORDS04-13505-3EDATA SHEETLINEAR IC8-Bit D/A Converter with Operational Amplifier ..
MB88344 ,8-Bit D/A Converter with Operational Amplifier Output BuffersFUJITSU SEMICONDUCTORDS04-13505-3EDATA SHEETLINEAR IC8-Bit D/A Converter with Operational Amplifier ..
MB88344 ,8-Bit D/A Converter with Operational Amplifier Output BuffersFUJITSU SEMICONDUCTORDS04-13505-3EDATA SHEETLINEAR IC8-Bit D/A Converter with Operational Amplifier ..
MB88345 ,D/A Converter for Digital Tuning (24-channel, 8-bit, on-chip OP amp)FUJITSU SEMICONDUCTORDS04-13508-2EDATA SHEETLinear IC ConverterCMOSD/A Converter for Digital Tuni ..
MB88345PF ,D/A Converter for Digital Tuning (24-channel, 8-bit, on-chip OP amp)FEATURES• Ultra-low power consumption (1.1 mW/ch : typical) • Compact space-saving package (QFP-32 ..
MB88346B ,R-2R TYPE 8-BIT D/A CONVERTER WITH OPERATIONAL AMPLIFIER OUTPUT BUFFERSFUJITSU SEMICONDUCTORDS04-13501-2EDATA SHEETLINEAR ICR-2R TYPE 8-BIT D/A CONVERTER WITHOPERATIONAL ..


MAX9117EXK-T
SC70, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference
General Description
The MAX9117–MAX9120 nanopower comparators in
space-saving SC70 packages feature Beyond-the-
Rails™ inputs and are guaranteed to operate down to
+1.8V. The MAX9117/MAX9118 feature an on-board
1.252V ±1.75% reference and draw an ultra-low supply
current of only 600nA, while the MAX9119/MAX9120
(without reference) require just 350nA of supply current.
These features make the MAX9117–MAX9120 family of
comparators ideal for all 2-cell battery-monitoring/man-
agement applications.
The unique design of the output stage limits supply-cur-
rent surges while switching, virtually eliminating the sup-
ply glitches typical of many other comparators. This
design also minimizes overall power consumption under
dynamic conditions. The MAX9117/MAX9119 have a
push-pull output stage that sinks and sources current.
Large internal-output drivers allow Rail-to-Rail®output
swing with loads up to 5mA. The MAX9118/MAX9120
have an open-drain output stage that makes them suit-
able for mixed-voltage system design. All devices are
available in the ultra-small 5-pin SC70 package.
Applications

2-Cell Battery Monitoring/Management
Ultra-Low-Power Systems
Mobile Communications
Notebooks and PDAs
Threshold Detectors/Discriminators
Sensing at Ground or Supply Line
Telemetry and Remote Systems
Medical Instruments
Features
Space-Saving SC70 Package (Half the Size of
SOT23)
Ultra-Low Supply Current
350nA Per Comparator (MAX9119/MAX9120)
600nA Per Comparator with Reference
(MAX9117/MAX9118)
Guaranteed to Operate Down to +1.8VInternal 1.252V ±1.75% Reference
(MAX9117/MAX9118)
Input Voltage Range Extends 200mV
Beyond-the-Rails
CMOS Push-Pull Output with ±5mA Drive
Capability (MAX9117/MAX9119)
Open-Drain Output Versions Available
(MAX9118/MAX9120)
Crowbar-Current-Free SwitchingInternal Hysteresis for Clean SwitchingNo Phase Reversal for Overdriven Inputs
MAX9117–MAX9120
SC70, 1.8V, Nanopower, Beyond-the-Rails
Comparators With/Without Reference
Pin ConfigurationsSelector Guide
Ordering Information

Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
19-1862; Rev 2; 8/02
MAX9117–MAX9120
SC70, 1.8V, Nanopower, Beyond-the-Rails
Comparators With/Without Reference
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—MAX9117/MAX9118

(VCC= +5V, VEE= 0V, VIN+= VREF, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCCto VEE)..................................................+6V
Voltage Inputs (IN+, IN-, REF).........(VEE- 0.3V) to (VCC+ 0.3V)
Output Voltage
MAX9117/MAX9119....................(VEE- 0.3V) to (VCC+ 0.3V)
MAX9118/MAX9120..................................(VEE- 0.3V) to +6V
Current Into Input Pins........................................................20mA
Output Current..................................................................±50mA
Output Short-Circuit Duration.................................................10s
Continuous Power Dissipation (TA= +70°C)
5-Pin SC70 (derate 2.5mW/°C above +70°C).............200mW
Operating Temperature Range...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10s).................................+300°C
MAX9117–MAX9120
SC70, 1.8V, Nanopower, Beyond-the-Rails
Comparators With/Without Reference
ELECTRICAL CHARACTERISTICS—MAX9119/MAX9120
ELECTRICAL CHARACTERISTICS—MAX9117/MAX9118 (continued)

(VCC= +5V, VEE= 0V, VIN+= VREF, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
MAX9117–MAX9120
SC70, 1.8V, Nanopower, Beyond-the-Rails
Comparators With/Without Reference
ELECTRICAL CHARACTERISTICS—MAX9119/MAX9120 (continued)

(VCC= +5V, VEE= 0V, VCM= 0V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
Note 1:
All specifications are 100% tested at TA= +25°C. Specification limits over temperature (TA= TMINto TMAX) are guaranteed
by design, not production tested.
Note 2:
VOSis defined as the center of the hysteresis band at the input.
Note 3:
The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of
the band (i.e., VOS) (Figure 2).
Note 4:
Specified with an input overdrive (VOVERDRIVE) of 100mV, and load capacitance of CL= 15pF. VOVERDRIVEis defined
above and beyond the offset voltage and hysteresis of the comparator input. For the MAX9117/MAX9118, reference voltage
error should also be added.
MAX9117–MAX9120
SC70, 1.8V, Nanopower, Beyond-the-Rails
Comparators With/Without Reference
Typical Operating Characteristics

(VCC= +5V, VEE = 0V, CL= 15pF, VOVERDRIVE= 100mV, TA= +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC= +5V, VEE = 0V, CL= 15pF, VOVERDRIVE= 100mV, TA= +25°C, unless otherwise noted.)
MAX9117–MAX9120
SC70, 1.8V, Nanopower, Beyond-the-Rails
Comparators With/Without Reference

MAX9117/MAX9119 OUTPUT VOLTAGE
HIGH vs. SOURCE CURRENT AND TEMPERATURE
MAX9117-20 toc10
SOURCE CURRENT (mA)
- V
(V)
SHORT-CIRCUIT SINK CURRENT
vs. TEMPERATURE
MAX9117-20 toc11
TEMPERATURE (°C)
SINK CURRENT (mA)
MAX9117/MAX9119 SHORT-CIRCUIT SOURCE
CURRENT vs. TEMPERATURE
MAX9117-20 toc12
TEMPERATURE (°C)
SOURCE CURRENT (mA)
MAX9117-20 toc13
TEMPERATURE (°C)
(mV)
OFFSET VOLTAGE vs. TEMPERATURE

HYSTERESIS VOLTAGE vs. TEMPERATURE
MAX9117-20 toc14
TEMPERATURE (°C)
(mV)
MAX9117/MAX9118
REFERENCE VOLTAGE vs. TEMPERATURE
MAX9117-20 toc15
TEMPERATURE (°C)
REFERENCE VOLTAGE (V)
MAX9117/MAX9118
REFERENCE VOLTAGE vs. SUPPLY VOLTAGE
MAX9117-20 toc16
SUPPLY VOLTAGE (V)
REFERENCE VOLTAGE (V)
MAX9117/MAX9118
REFERENCE OUTPUT VOLTAGE
vs. REFERENCE SOURCE CURRENT
MAX9117-20 toc17
SOURCE CURRENT (nA)
REFERENCE VOLTAGE (V)
MAX9117/MAX9118
REFERENCE OUTPUT VOLTAGE
vs. REFERENCE SINK CURRENT
MAX9117-20 toc18
SINK CURRENT (nA)
REFERENCE VOLTAGE (V)
Typical Operating Characteristics (continued)
(VCC= +5V, VEE = 0V, CL= 15pF, VOVERDRIVE= 100mV, TA= +25°C, unless otherwise noted.)
MAX9117–MAX9120
SC70, 1.8V, Nanopower, Beyond-the-Rails
Comparators With/Without Reference

MAX9117-20 toc23
INPUT OVERDRIVE (mV)
tPD-
PROPAGATION DELAY (tPD-)
vs. INPUT OVERDRIVE
1020304050
MAX9117-20 toc24
INPUT OVERDRIVE (mV)
tPD+
MAX9117/MAX9119
PROPAGATION DELAY (tPD+)
vs. INPUT OVERDRIVE
100100010,000
MAX9118/MAX9120
PROPAGATION DELAY (tPD-)
vs. PULLUP RESISTANCE

MAX9117-20 toc25
tPD-100100010,000
MAX9118/MAX9120
PROPAGATION DELAY (tPD+)
vs. PULLUP RESISTANCE

MAX9117-20 toc26
RPULLUP (kΩ)
tPD+
IN+
(50mV/div)
OUT
(2V/div)
PROPAGATION DELAY (tPD-)
(VCC = +5V)

20µs/div
MAX9117-20 toc27
MAX9117-20 toc19
TEMPERATURE (°C)
tPD-
PROPAGATION DELAY (tPD-)
vs. TEMPERATURE

MAX9117-20 toc20
tPD+
MAX9117/MAX9119
PROPAGATION DELAY (tPD+)
vs. TEMPERATURE

TEMPERATURE (°C)
MAX9117-20 toc21
CAPACITIVE LOAD (nF)
tPD-
PROPAGATION DELAY (tPD-)
vs. CAPACITIVE LOAD
MAX9117-20 toc22
CAPACITIVE LOAD (nF)
tPD+
MAX9117/MAX9119
PROPAGATION DELAY (tPD+)
vs. CAPACITIVE LOAD

180
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED