IC Phoenix
 
Home ›  MM80 > MAX834EUK+T-MAX835EUK,Micropower, Latching Voltage Monitors in SOT23-5
MAX834EUK+T-MAX835EUK Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
MAX834EUK+T |MAX834EUKTMAXIMN/a10000avaiMicropower, Latching Voltage Monitors in SOT23-5
MAX835EUKMAXIMN/a1258avaiMicropower, Latching Voltage Monitors in SOT23-5


MAX834EUK+T ,Micropower, Latching Voltage Monitors in SOT23-5ELECTRICAL CHARACTERISTICS(V = +2.5V to +11V, T = T to T , unless otherwise noted. Typical values a ..
MAX834EUK-T ,Micropower / Latching Voltage Monitors in SOT23-5Applications ______________Ordering InformationPrecision Battery MonitorTEMP. PIN- SOTPARTLoad Swit ..
MAX834EUK-T ,Micropower / Latching Voltage Monitors in SOT23-5ELECTRICAL CHARACTERISTICS(V = +2.5V to +11V, T = T to T , unless otherwise noted. Typical values a ..
MAX835EUK ,Micropower, Latching Voltage Monitors in SOT23-5Applications Ordering InformationPrecision Battery MonitorsPART PIN-PACKAGE TOP MARKLoad Switching5 ..
MAX835EUK-T ,Micropower / Latching Voltage Monitors in SOT23-5FeaturesThe MAX834/MAX835 micropower voltage monitors' Prevents Deep Discharge of Batteriescontain ..
MAX836EUS ,4-Pin Micropower Voltage MonitorsGeneral DescriptionThe MAX836/MAX837 micropower voltage monitors♦ ±1.25% Precision Voltage Threshol ..
MB81C81A-35 ,CMOS 256K-BIT HIGH-SPEED SRAMMay 1990 00 Edition1.0 FUJITSU M38 1 C8 1A-25/-35 CMOS 256K-BI T HIGH-SPEED SRAM 256K Words ..
MB81F643242C-10FN ,4 x 512K x 32 bit synchronous dynamic RAMFUJITSU SEMICONDUCTORADVANCED INFO. AE0.1EDATA SHEETMEMORYCMOS4 · 512 K · 32 BITSYNCHRONOUS DYNAMIC ..
MB81F643242C-10FN ,4 x 512K x 32 bit synchronous dynamic RAMfeatures a fully synchronous operation referenced to a positive edge clock whereby all operations a ..
MB81N643289-60FN ,8 x 256K x 32 bit double data rate FCRAMapplications where large memory density and high effective bandwidth arerequired and where a simple ..
MB8264A-10 , MOS 65536-BIT DYNAMIC RANDOM ACCESS MEMORY
MB8264A-10 , MOS 65536-BIT DYNAMIC RANDOM ACCESS MEMORY


MAX834EUK+T-MAX835EUK
Micropower, Latching Voltage Monitors in SOT23-5
General Description
The MAX834/MAX835 micropower voltage monitors
contain a 1.204V precision bandgap reference, com-
parator, and latched output in a 5-pin SOT23 package.
Using the latched output prevents deep discharge of
batteries. The MAX834 has an open-drain, n-channel
output driver, while the MAX835 has a push-pull output
driver. Two external resistors set the trip-threshold
voltage.
The MAX834/MAX835 feature a level-sensitive latch,
eliminating the need to add hysteresis to prevent oscil-
lations in battery-load-disconnect applications.
Applications

Precision Battery Monitors
Load Switching
Battery-Powered Systems
Threshold Detectors
Features
Prevent Deep Discharge of BatteriesPrecision ±1.25% Voltage ThresholdLatched Output (Once Low, Stays Low Until
Cleared)
SOT23-5 PackageLow Cost+2.5V to +11V Wide Operating Voltage Range< 2µA Typical Supply CurrentOpen-Drain Output (MAX834)/Push-Pull Output
(MAX835)
MAX834/MAX835
Micropower, Latching Voltage Monitors
in SOT23-5

GNDVCC5OUTCLEAR
MAX834
MAX835
SOT23-5

TOP VIEW4
Pin Configuration

GND0.1μF
VCC
CLEAR LATCH
(MAX834
ONLY)
VCC
VCC
CLEAR
MAX834
MAX835
OUTOUT
Typical Operating Circuit

19-1157; Rev 3; 3/10
Ordering Information
Note: All devices are specified over the -40°C to +85°C operating

temperature range.
Devices are available in both leaded and lead-free packaging.
Specify lead-free by changing “-T” with “+T” when ordering.
PARTPIN-PACKAGETOP MARK
MAX834E
U K- T5 SOT23AAAX
MAX835E
U K- T5 SOT23AAAY
MAX834/MAX835
Micropower, Latching Voltage Monitors
in SOT23-5
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS

(VCC= +2.5V to +11V, TA= TMINto TMAX, unless otherwise noted. Typical values are at TA= +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
VCC, OUT(MAX834), CLEAR to GND....................-0.3V to +12V
IN, OUT(MAX835) to GND.........................-0.3V to (VCC+ 0.3V)
INPUT Current
VCC................................................................................20mA
IN....................................................................................10mA
OUTCurrent.......................................................................-20mA
VCCRate of Rise.............................................................100V/µs
Continuous Power Dissipation (TA= +70°C)
5-Pin SOT23 (derate 7.1mW/C above +70°C).............571mW
Operating Temperature Range...........................-40°C to +85°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10s).................................+300°C
Soldering Temperature (reflow).......................................+240°C
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS

Operating Voltage
Range (Note 1)VC C 2.511.0V
TA = +25°C2.45C C = 3.6V
TA = TMIN to TMAX10
VIN = 1.6V, OUT =
low, VCLEAR ≥
VC C - 0.25V or
VCLEAR ≤ 0.25VVC C = full operating range15
TA = +25°C1.14C C = 3.6V
TA = TMIN to TMAX8
Supply Current
(Note 2)IC C
VIN = 1.25V, OUT
= high, VCLEAR ≥
VCC - 0.25V or
VCLEAR ≤ 0.25VVC C = full operating range13
TA = +25°C1.1851.2041.215Threshold VoltageVTHVIN fallingTA = 0°C to +70°C1.1691.2041.231V
Threshold Voltage
HysteresisVHYSTVC C = 5V, IN = low to high6mV
IN Operating Voltage
Range (Note 1)VIN0VC C - 1V
IN Leakage Current
(Note 3)IINVIN = VTH±3±12nA
Propagation DelaytPLVC C = 5V, 50mV overdrive80µs
Glitch ImmunityVC C = 5V, 100mV overdrive35µs
OUT Rise TimetRTVC C = 5V, no load (MAX835 only)200ns
OUT Fall TimetFTVC C = 5V, no load (MAX834 pullup = 10kΩ)480ns
Output Leakage
Current (Note 4)ILOUTVIN > VTH(MAX) (MAX834 only)±1µA
Output-Voltage HighVOHVIN > VTH(MAX), ISOURCE = 500µA (MAX835 only)VC C -
0.5V
Output-Voltage LowVOLVIN < VTH(MIN), ISINK = 500µA0.4V
CLEAR Input High
VoltageVCIH2V
MAX834/MAX835
Micropower, Latching Voltage Monitors
in SOT23-5
ELECTRICAL CHARACTERISTICS (continued)

(VCC= +2.5V to +11V, TA= TMINto TMAX, unless otherwise noted. Typical values are at TA= +25°C.)
Note 1:
The voltage-detector output remains in the correct state for VCCdown to 1.2V when VIN≤VCC/2.
Note 2:
Supply current has a monotonic dependence on VCC(see the Typical Operating Characteristics).
Note 3:
IN leakage current has a monotonic dependence on VCC(see the Typical Operating Characteristics).
Note 4:
The MAX834 open-drain output can be pulled up to a voltage greater than VCC, but may not exceed 11V.
__________________________________________Typical Operating Characteristics

(VCC= +5V, Typical Operating Circuit, TA = +25°C, unless otherwise noted.)
INPUT LEAKAGE CURRENT
vs. TEMPERATURE
MAXMAX834/835-07
TEMPERATURE (°C)
INPUT LEAKAGE CURRENT (nA)
VCC = 5.0V
VIN = 1.2V3489101112
INPUT LEAKAGE CURRENT
vs. INPUT VOLTAGE

MAXMAX834/835-08
VIN (V)
INPUT LEAKAGE CURRENT (nA)567
TA = +25°C
TA = +85°C
TA = -40°C
VCC = 11.0V
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
MAXMAX834/835-10
VCC (V)
SUPPLY CURRENT (567
TA = +25°C
VIN = 1.25V
TA = +85°C
TA = -40°C 2.42.83.23.6
SUPPLY CURRENT
vs. INPUT VOLTAGE

MAX834/835-11
VIN (V)
SUPPLY CURRENT (
VCC = 3.6V 3489101112
SUPPLY CURRENT
vs. INPUT VOLTAGE

MAXMAX834/835-12
VIN (V)
SUPPLY CURRENT (567
VCC = 11.0V
PROGRAMMED TRIP VOLTAGE
vs. TEMPERATURE
MAXMAX834/835-13
TEMPERATURE (°C)
TRIP VOLTAGE (V)
VTRIP ≈ 3.3V
(FIGURE 2, R1 = 180kΩ,
R2 = 100kΩ)
VTRIP ≈ 4.5V
(FIGURE 2, R1 = 270kΩ,
R2 = 100kΩ)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS

CLEAR Input Low
VoltageVCIL0.4V
CLEAR Input Leakage
CurrenttCLEAR±1±100nA
CLEAR Input Pulse
WidthtCLR1µs
MAX834/MAX835
Micropower, Latching Voltage Monitors
in SOT23-5
3489101112
MAX835
OUTPUT SHORT-CIRCUIT
SOURCE CURRENT vs. SUPPLY VOLTAGE

MAXMAX834/835-18
VCC (V)
SHORT-CIRCUIT CURRENT (mA)567
TA = +25°C
VIN = 1.3V
TA = +85°C
TA = -40°C
SUPPLY VOLTAGE FALLING TO OUT
PROPAGATION DELAY vs. TEMPERATURE
MAXMAX834/835-19
TEMPERATURE (°C)
PROPAGATION DELAY (
1mV/μs
10mV/μs
MAX835
OUTPUT RISE TIME vs. SUPPLY VOLTAGE
MAXMAX834/835-20
VCC (V)
RISE TIME (ns)567
TA = +25°C
TA = -40°C
TA = +85°C
OUTPUT FALL TIME
vs. SUPPLY VOLTAGE
MAXMAX834/835-21
VCC (V)
FALL TIME (567
TA = +25°C
TA = +85°C
TA = -40°C 1
10k
100k
OUTPUT LOW VOLTAGE
vs. OUTPUT SINK CURRENT
OUTPUT SINK CURRENT (mA)
OL
(mV)
MAXMAX834/835-23
TA = -40°C
TA = +85°C
VCC = 11V
TA = +25°C
10k
100k
MAX835
OUTPUT HIGH VOLTAGE
vs. OUTPUT SOURCE CURRENT
OUTPUT SOURCE CURRENT (mA)
CC
- V
(mV)
MAXMAX834/835-25TA = +25°C
TA = -40°C
VCC = 11V
TA = +85°C
OUTPUT LOW VOLTAGE
vs. SUPPLY VOLTAGE
MAXMAX834/835-14
VCC (V)
(mV)567
TA = +25°C
ISINK = 500μA
TA = +85°C
TA = -40°C
MAX835
OUTPUT HIGH VOLTAGE
vs. SUPPLY VOLTAGE
MAXMAX834/835-15
VCC (V)
CC
- V
OH
(mV)567
TA = +25°C
ISOURCE = 500μA
TA = +85°C
TA = -40°C 3489101112
OUTPUT SHORT-CIRCUIT
SINK CURRENT vs. SUPPLY VOLTAGE

MAXMAX834/835-17
VCC (V)
SHORT-CIRCUIT CURRENT (mA)567
TA = +25°C
TA = +85°C
TA = -40°C
VIN = 1.1V
_____________________________Typical Operating Characteristics (continued)

(VCC= +5V, Typical Operating Circuit, TA = +25°C, unless otherwise noted.)
MAX834/MAX835
Micropower, Latching Voltage Monitors
in SOT23-5
_____________________________Typical Operating Characteristics (continued)

(VCC= +5V, Typical Operating Circuit, TA = +25°C, unless otherwise noted.)
10k
OUTPUT LOW VOLTAGE
vs. OUTPUT SINK CURRENT
OUTPUT SINK CURRENT (mA)
(mV)
MAXMAX834/835-27
TA = +25°C
TA = +85°C
VCC = 3.6V
TA = -40°C
10k
MAX835
OUTPUT HIGH VOLTAGE
vs. OUTPUT SOURCE CURRENT
OUTPUT SOURCE CURRENT (mA)
- V
(mV)
MAXMAX834/835-29TA = +85°C
VCC = 3.6V
TA = -40°C
TA = +25°C
CLEAR TO OUT PROPAGATION DELAY
vs. TEMPERATURE
MAXMAX834/835-30
TEMPERATURE (°C)
PROPAGATION DELAY (
VCC = 11.0V
VCC = 5.0V
VCC = 3.6V
VIN > VTH
______________________________________________________________Pin Description

LATCHOUT
VCC
CLEAR
GND
1.204VIN
MAX834
MAX835
Figure 1. Functional DiagramFigure 2. Programming the Trip Voltage (VTRIP)
CLEAR
LATCHOUT
VCCVCC
VCC
RL (MAX834 ONLY)
0.1μF
OUTCLEAR
GNDIN
MAX834
MAX835
VTRIP = (1.204) ( )
(UNITS ARE OHMS AND VOLTS)
R1 + R2
PINNAMEFUNCTION
CLEARClear Input Resets the Latched Output. With VIN > VTH, pulse CLEAR high for a minimum of 1µs to reset
the output latch. Connect to VCC to make the latch transparent.GNDSystem Ground
3VCCSystem Supply Input
4INNoninverting Input to the Comparator. The inverting input connects to the internal 1.204V bandgap
reference.OUTOpen-Drain (MAX834) or Push-Pull (MAX835) Latched Output. OUT is active-low.
MAX834/MAX835
Micropower, Latching Voltage Monitors
in SOT23-5
_______________Detailed Description

The MAX834/MAX835 micropower voltage monitors con-
tain a 1.204V precision bandgap reference and a com-
parator with an output latch (Figure 1). The difference
between the two parts is the structure of the comparator
output driver. The MAX834 has an open-drain, n-channel
output driver that can be pulled up to a voltage higher
than VCC, but less than 11V. The MAX835’s output is
push-pull and can both source and sink current.
Programming the Trip Voltage (VTRIP)

Two external resistors set the trip voltage, VTRIP(Figure 2).
VTRIPis the point at which the falling monitored voltage
(typically VCC) causes OUTto go low. IN’s high input
impedance allows the use of large-value resistors without
compromising trip voltage accuracy. To minimize current
consumption, choose a value for R2 between 500kΩand
1MΩ, then calculate R1 as follows:
R1 = R2 [(VTRIP/ VTH) - 1]
where VTRIPis the desired trip voltage and VTHis the
threshold voltage (1.204V). The voltage at IN must be at
least 1V less than VCC.
Latched-Output Operation

The MAX834/MAX835 feature a level-sensitive latch
input (CLEAR), designed to eliminate the need for hys-
teresis in battery undervoltage-detection applications.
When the monitored voltage (VMON) is above the pro-
grammed trip voltage (VTRIP) (as when the system bat-
tery is recharged or a fresh battery is installed), pulse
CLEAR low-high-low for at least 1µs to reset the output
latch (OUTgoes high). When VMONfalls below VTRIP,
OUTgoes low and remains low (even if VMONrises
above VTRIP), until CLEAR is pulsed high again with
VMON> VTRIP. Figure 3a shows the timing relationship
between VMON, OUT, and CLEAR.
> 1µs> 1µs
> VTRIP
< VTRIP
VCC
CLEAR
VCC
OUT
> 1µs
VMON
> VTRIP
< VTRIP
VCCOUT
VMON
Figure 3a. Timing Diagram
Figure 3b. Timing Diagram, CLEAR = VCC
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED