IC Phoenix
 
Home ›  MM35 > MAX2042AETP+-MAX2042AETP+T,SiGe, High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer
MAX2042AETP+-MAX2042AETP+T Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
MAX2042AETP+ |MAX2042AETPMAXIMN/a21avaiSiGe, High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer
MAX2042AETP+T |MAX2042AETPTMAXIMN/a2373avaiSiGe, High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer


MAX2042AETP+T ,SiGe, High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Bufferapplications (for a 2.5GHz variant tuned specifically for low-side LO injection, refer  +21.7dBm I ..
MAX2043ETX+T ,1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx MixerApplicationsUMTS/WCDMA and 3G Base StationsOrdering InformationDCS 1800 and EDGE Base StationsPCS 1 ..
MAX2043EVKIT ,Evaluation Kit for the MAX2043component suppliers.Component ListDESIGNATION QTY DESCRIPTIONDESIGNATION QTY DESCRIPTIONR1 1 357Ω ± ..
MAX2047ETJ ,High-Gain Vector MultipliersApplicationsCONTROL90°VI2 2 23 GNDAMPLIFIER IPHASESHIFTERVQ13 22 RBIASMAX2045Ordering InformationMA ..
MAX204CPE ,+5V RS-232 Transceivers with 0.1uF External Capacitorsapplications with limited circuit board space.
MAX204CWE ,+5V RS-232 Transceivers with 0.1uF External CapacitorsFeatures Superior to Bipolar: . 0.1pF to 10pF External Capacitors ' 120kbits/sec Data Rate ..
MAX5115EEP ,Nonvolatile, Quad, 8-Bit DACs with 2-Wire Serial InterfaceFeatures♦ Nonvolatile Registers Initialize DACs to StoredThe MAX5115/MAX5116 quad, 8-bit, digital-t ..
MAX5116EEE ,Nonvolatile, Quad, 8-Bit DACs with 2-Wire Serial InterfaceApplicationsDAC1Digital Gain and Offset AdjustmentsNONVOLATILE/DAC1VOLATILEOUT1SCLProgrammable Atte ..
MAX512 ,Low-Cost, Triple, 8-Bit Voltage-Output DACs with Serial InterfaceFeaturesThe MAX512/MAX513 contain three 8-bit, voltage-output' Operate from a Single +5V (MAX512) o ..
MAX5120BEEE ,+3V/+5V, 12-Bit, Serial Voltage-Output DACs with Internal ReferenceFeaturesThe MAX5120/MAX5121 are low-power, 12-bit, voltage-' Single-Supply Operationoutput digital- ..
MAX5120BEEE+ ,+3V/+5V, 12-Bit, Serial, Voltage-Output DACs with Internal ReferenceFeaturesThe MAX5120/MAX5121 are low-power, 12-bit, voltage-♦ Single-Supply Operationoutput digital- ..
MAX5122AEEE ,+5V/+3V, 12-Bit, Serial, Force/Sense DACs with 10ppm/∑C Internal ReferenceApplicationsPin ConfigurationIndustrial Process ControlAutomatic Test EquipmentTOP VIEWFB 1 16 VDDD ..


MAX2042AETP+-MAX2042AETP+T
SiGe, High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
19-5902; Rev 0; 6/11
Ordering Information appears at end of data sheet.
For related parts and recommended products to use with this part,
refer to /MAX2042A.related.
EVALUATION KIT AVAILABLE
General Description
The MAX2042A single, high-linearity upconversion/
downconversion mixer provides up to +33dBm input
IP3, 7.25dB noise figure, and 7.2dB conversion loss for
1600MHz to 3900MHz GSM/EDGE, CDMA, TD-SCDMA,
WCDMA, LTE, TD-LTE, WiMAXK, and MMDS wireless
infrastructure applications. With an ultra-wide 1300MHz
to 4000MHz LO frequency range, the IC can be used in
either low-side or high-side LO injection architectures for
virtually all 1.7GHz to 3.5GHz applications (for a 2.5GHz
variant tuned specifically for low-side LO injection, refer
to the MAX2042).
In addition to offering excellent linearity and noise
performance, the IC also yields a high level of component
integration. This device includes a double-balanced
passive mixer core, an LO buffer, and on-chip baluns
that allow for single-ended RF and LO inputs. The
IC requires a nominal LO drive of 0dBm, and supply
current is typically 140mA at VCC = 5.0V or 122mA at
VCC = 3.3V.
The MAX2042A is pin compatible with the MAX2042
2000MHz to 3000MHz mixer. The MAX2042A is also pin
similar with the MAX2029/MAX2031/MAX2033 650MHz
to 1550MHz mixers, the MAX2039/MAX2041 1700MHz
to 3000MHz mixers, and the MAX2044 2300MHz to
4000MHz mixer, making the entire family of upconverters/
downconverters ideal for applications where a common
PCB layout is used for multiple frequency bands.
The MAX2042A is available in a compact, 20-pin TQFN
package (5mm x 5mm) with an exposed pad. Electrical
performance is guaranteed over the extended TC = -40NC
to +85NC temperature range.
Applications
1.8GHz/1.9GHz GSM/EDGE/CDMA Base Stations
2.1GHz WCDMA/LTE Base Stations
2.3GHz TD-SCDMA/TD-LTE Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Benefits and Features
S Wide-Band Coverage  1600MHz to 3900MHz RF Frequency Range  1300MHz to 4000MHz LO Frequency Range  50MHz to 500MHz IF Frequency Range
S 7.2dB Conversion Loss
S 7.25dB Noise Figure
S High Linearity  +33dBm Input IP3  +21.7dBm Input 1dB Compression Point  72dBc Typical 2LO - 2RF Spurious Rejection at
PRF = -10dBm
S Simple PCB Layout  Integrated LO Buffer  Integrated LO and RF Baluns for Single-Ended
Inputs
S Low -6dBm to +3dBm LO Drive
S Pin Compatible with the MAX2042 2000MHz to
3000MHz Mixer
S Pin-Similar with the MAX2029/MAX2031/MAX2033
650MHz to 1550MHz Mixers, MAX2039/MAX2041
1700MHz to 3000MHz Mixers, and MAX2044
2300MHz to 4000MHz Mixer
S Single +5.0V or +3.3V Supply
S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/Reduced-
Performance Mode
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
TABLE OF CONTENTS
Absolute Maximum Ratings ......................................................................4
Package Thermal Characteristics..................................................................4
5.0V Supply DC Electrical Characteristics...........................................................4
3.3V Supply DC Electrical Characteristics...........................................................4
Recommended AC operating conditions............................................................5
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................7
5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................8
5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................9
5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)...............................................................10
5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)...............................................................11
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION)..................................................................12
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION)..................................................................13
Typical Operating Characteristics ................................................................14
Pin Configuration .............................................................................46
Pin Description...............................................................................46
Functional Diagram ...........................................................................47
Detailed Description...........................................................................47
RF Input and Balun..........................................................................47
LO Inputs, Buffer, and Balun...................................................................47
High-Linearity Mixer .........................................................................47
Differential IF Ports ..........................................................................47
Applications Information........................................................................48
Input and Output Matching....................................................................48
Reduced-Power Mode .......................................................................48
Layout Considerations........................................................................48
Power-Supply Bypassing .....................................................................48
Exposed Pad RF/Thermal Considerations ........................................................48
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
TABLE OF CONTENTS (continued)
Typical Application Circuit ......................................................................50
Ordering Information ..........................................................................51
Chip Information..............................................................................51
Package Information...........................................................................51
Revision History ..............................................................................52
Table 1. Component Values—Downconverter Mode..................................................49
Table 2. Component Values—Upconverter Mode....................................................49
LIST OF TABLES
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
VCC to GND ..........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND .........................-0.3V to (VCC + 0.3V)
RF, LO Input Power .......................................................+20dBm
IF Input Power (50ω source) .........................................+18dBm
RF, LO Current (RF and LO are DC shorted to
GND through a balun) ....................................................50mA
Operating Case Temperature Range (Note 1) .......-40NC to +85NC
Continuous Power Dissipation (Note 2) ..............................5.0W
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................-65NC to +150NC
Lead Temperature (soldering 10s) .................................+300NC
Soldering Temperature (reflow) ......................................+260NC
ABSOLUTE MAXIMUM RATINGS
Note 1: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Note 2: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Note 3: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to /thermal-tutorial.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
TQFN
Junction-to-Ambient
Thermal Resistance BJA (Notes 3, 4) .......................+38°C/W
Junction-to-Case
Thermal Resistance BJC (Notes 2, 4) .......................+13°C/W
PACKAGE THERMAL CHARACTERISTICS
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values
are at VCC = 5.0V, TC = +25NC.)
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC applied. TC = -40NC to +85NC, unless otherwise noted. Typical values
are at VCC = 3.3V, TC = +25NC.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Supply VoltageVCC4.7555.25V
Supply CurrentICC140162mA
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Supply VoltageVCC3.03.33.6V
Supply CurrentICC122mA
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from
50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz,
fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz,
fIF = 300MHz.) (Note 7)
RECOMMENDED AC OPERATING CONDITIONS
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
RF Frequency Range Without
TuningfRF1Typical Application Circuit with C1 = 8.2pF
(Table 1) (Notes 5, 6)20002900MHz
RF Frequency Range With
Low-Band TuningfRF2Typical Application Circuit with C1 = 1.8pF,
L1 = 12nH (Table 1) (Notes 5, 6)16002000MHz
RF Frequency Range With
High-Band TuningfRF3Typical Application Circuit with C1 = 1.5pF
(Table 1) (Notes 5, 6)30003900MHz
LO FrequencyfLO(Note 5, 6)13004000MHz
IF FrequencyfIF
Using M/A-Com MABACT0069 1:1
transformer as defined in the Typical
Application Circuit, IF matching components
affect the IF frequency range (Notes 5, 6)500MHz
LO DrivePLO-60+3dBm
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Small-Signal Conversion LossLCfRF = 2600MHz, fLO = 2900MHz7.2
fRF = 2900MHz, fLO = 3200MHz (Note 8)7.8
Loss Variation vs. FrequencyDLC
fRF = 2010MHz to 2025MHzQ0.05dB
fRF = 2305MHz to 2360MHzQ0.05dB
fRF = 2500MHz to 2570MHzQ0.05dB
fRF = 2570MHz to 2620MHzQ0.05dB
fRF = 2500MHz to 2690MHzQ0.13dB
fRF = 2700MHz to 2900MHzQ0.02dB
Conversion Loss Temperature
CoefficientTCCLTC = -40NC to +85NC0.007dB/NC
Single Sideband Noise FigureNFSSBNo blockers present7.25dB
Noise Figure Temperature
CoefficientTCNFfRF = 2600MHz, single sideband,
no blockers present, TC = -40NC to +85NC0.022dB/NC
Noise Figure Under BlockingNFBlocking
+8dBm blocker tone applied to RF port,
fRF = 2600MHz, fLO = 2900MHz,
fBLOCKER = 2400MHz (Note 9)dB
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from
50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz,
fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz,
fIF = 300MHz.) (Note 7)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Input 1dB Compression PointIP1dB(Note 10)21.7dBm
Third-Order Input Intercept
PointIIP3fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm
(Note 8)33dBm
IIP3 Variation with TCfRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm,
TC = -40NC to +85NCQ0.3dB
2LO - 2RF Spur Rejection2 x 2
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2750MHz
PRF = -10dBm72
dBc
PRF = 0dBm 62
3LO - 3RF Spur Rejection3 x 3
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2800MHz
PRF = -10dBm91
dBc
PRF = 0dBm71
RF Input Return LossRLRFLO on and IF terminated into a matched
impedance20dB
LO Input Return LossRLLORF and IF terminated into a matched
impedance19dB
IF Output ImpedanceZIFNominal differential impedance at the IC’s IF
outputs50I
IF Return LossRLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the
Typical Application Circuit
17.5dB
RF-to-IF IsolationPLO = +3dBm (Note 8)38dB
LO Leakage at RF PortPLO = +3dBm (Note 8)-29dBm
2LO Leakage at RF PortPLO = +3dBm -30.1dBm
LO Leakage at IF PortPLO = +3dBm (Note 8)-31dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources, Typical values
are for TC = +25NC, VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Small-Signal Conversion LossLC(Note 8)7.4dB
Loss Variation vs. FrequencyDLCfRF = 2000MHz to 2900MHz, any 100MHz bandQ0.25dB
Conversion Loss Temperature
CoefficientTCCLTC = -40NC to +85NC0.0079dB/NC
Single Sideband Noise FigureNFSSBNo blockers present7.4dB
Noise Figure Temperature
CoefficientTCNFSingle sideband, no blockers present,
TC = -40NC to +85NC0.022dB/NC
Input 1dB Compression PointIP1dB(Note 10)19.7dBm
Third-Order Input Intercept
PointIIP3fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm31dBm
IIP3 Variation with TCfRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NCQ0.1dB
2LO - 2RF Spur Rejection2 x 2
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2750MHz
PRF = -10dBm72
dBc
PRF = 0dBm62
3LO - 3RF Spur Rejection3 x 3
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2800MHz
PRF = -10dBm85
dBc
PRF = 0dBm65
RF Input Return LossRLRFLO on and IF terminated into a matched
impedance16dB
LO Input Return LossRLLORF and IF terminated into a matched
impedance32dB
IF Output ImpedanceZIFNominal differential impedance at the IC’s IF
outputs50I
IF Return LossRLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application CircuitdB
RF-to-IF IsolationPLO = +3dBm38dB
LO Leakage at RF PortPLO = +3dBm-31.5dBm
2LO Leakage at RF PortPLO = +3dBm-30dBm
LO Leakage at IF PortPLO = +3dBm-31.4dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Small-Signal Conversion LossLC8.2dB
Loss Variation vs. FrequencyDLCfRF = 3450MHz to 3750MHz, any 100MHz bandQ0.085dB
fRF = 3450MHz to 3750MHz, any 200MHz bandQ0.17dB
Conversion Loss Temperature
CoefficientTCCLTC = -40NC to +85NC0.0091dB/NC
Single Sideband Noise FigureNFSSBNo blockers present7.6dB
Noise Figure Temperature
CoefficientTCNFSingle sideband, no blockers present,
TC = -40NC to +85NC0.025dB/NC
Input 1dB Compression PointIP1dB(Note 10)20.6dBm
Third-Order Input Intercept
PointIIP3fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm 31dBm
IIP3 Variation with TCfRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm,
TC = -40NC to +85NCQ0.5dB
2RF - 2LO Spur Rejection2 x 2
fRF = 3500MHz,
fLO = 3200MHz,
fSPUR = 3350MHz
PRF = -10dBm71
dBc
PRF = 0dBm 61
3RF - 3LO Spur Rejection3 x 3
fRF = 3500MHz,
fLO = 3200MHz,
fSPUR = 3300MHz
PRF = -10dBm87
dBc
PRF = 0dBm 67
RF Input Return LossRLRFLO on and IF terminated into a matched
impedance15dB
LO Input Return LossRLLORF and IF terminated into a matched
impedance20dB
IF Output ImpedanceZIFNominal differential impedance at the
IC’s IF outputs50I
IF Return LossRLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the
Typical Application Circuit
16.5dB
RF-to-IF IsolationPLO = +3dBm35dB
LO Leakage at RF PortPLO = +3dBm-29.5dBm
2LO Leakage at RF PortPLO = +3dBm-23dBm
LO Leakage at IF PortPLO = +3dBm-31.5dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Small-Signal Conversion LossLC8.6dB
Loss Variation vs. FrequencyDLCfRF = 3450MHz to 3750MHz, any 100MHz bandQ0.1dB
fRF = 3450MHz to 3750MHz, any 200MHz bandQ0.2dB
Conversion Loss
Temperature CoefficientTCCLTC = -40NC to +85NC0.01dB/NC
Single Sideband Noise
FigureNFSSBNo blockers present9dB
Noise Figure Temperature
CoefficientTCNFSingle sideband, no blockers present,
TC = -40NC to +85NC0.025dB/NC
Input 1dB Compression PointIP1dB(Note 10)18dBm
Third-Order Input Intercept
PointIIP3fRF1 = 3500MHz, fRF2 = 3501MHz,
PRF1 = PRF2 = 0dBm28.6dBm
IIP3 Variation with TCfRF1 = 3500MHz, fRF2 = 3501MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NCQ0.5dB
2LO - 2RF Spur Rejection2 x 2
fRF = 3500MHz,
fLO = 3800MHz,
fSPUR = 3650MHz
PRF = -10dBm70
dBc
PRF = 0dBm60
3LO - 3RF Spur Rejection3 x 3
fRF = 3500MHz,
fLO = 3800MHz,
fSPUR = 3700MHz
PRF = -10dBm83
dBc
PRF = 0dBm63
RF Input Return LossRLRFLO on and IF terminated into a matched
impedance15.5dB
LO Input Return LossRLLORF and IF terminated into a matched impedance18.5dB
IF Output ImpedanceZIFNominal differential impedance at the
IC’s IF outputs50I
IF Return LossRLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application CircuitdB
RF-to-IF IsolationPLO = +3dBm35dB
LO Leakage at RF PortPLO = +3dBm-36.4dBm
2LO Leakage at RF PortPLO = +3dBm-12.8dBm
LO Leakage at IF PortPLO = +3dBm-31dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 1850MHz, fLO = 2150MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Small-Signal Conversion LossLC7.5dB
Loss Variation vs. FrequencyDLC
fRF = 1650MHz to 1850MHz, any 100MHz bandQ0.18fRF = 1850MHz to 2250MHz, any 100MHz bandQ0.15
fRF = 1650MHz to 1850MHz, any 200MHz bandQ0.36
fRF = 1850MHz to 2250MHz, any 200MHz bandQ0.3
Conversion Loss
Temperature CoefficientTCCLTC = -40NC to +85NC0.0067dB/NC
Single Sideband Noise FigureNFSSBNo blockers present7dB
Noise Figure Temperature
CoefficientTCNFSingle sideband, no blockers present,
TC = -40NC to +85NC0.021dB/NC
Input 1dB Compression PointIP1dB(Note 10)23dBm
Third-Order Input Intercept
PointIIP3fRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm34.8dBm
IIP3 Variation with TCfRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NCQ0.5dB
2LO - 2RF Spur Rejection2 x 2
fRF = 1850MHz,
fLO = 2150MHz,
fSPUR = 2000MHz
PRF = -10dBm83
dBc
PRF = 0dBm73
3LO - 3RF Spur Rejection3 x 3
fRF = 1850MHz,
fLO = 2150MHz,
fSPUR = 2050MHz
PRF = -10dBm94
dBc
PRF = 0dBm74
RF Input Return LossRLRFLO on and IF terminated into a matched
impedance16.4dB
LO Input Return LossRLLORF and IF terminated into a matched impedance25.2dB
IF Output ImpedanceZIFNominal differential impedance at the IC’s IF
outputs50I
IF Return LossRLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application CircuitdB
RF-to-IF IsolationPLO = +3dBm48.7dB
LO Leakage at RF PortPLO = +3dBm-28.8dBm
2LO Leakage at RF PortPLO = +3dBm-35.3dBm
LO Leakage at IF PortPLO = +3dBm-20.8dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 1850MHz, fLO = 1550MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Small-Signal Conversion LossLC8.5dB
Loss Variation vs. FrequencyDLC
fRF = 1650MHz to 1850MHz, any 100MHz bandQ0.35fRF = 1850MHz to 2250MHz, any 100MHz bandQ0.075
fRF = 1650MHz to 1850MHz, any 200MHz bandQ0.7
fRF = 1850MHz to 2250MHz, any 200MHz bandQ0.15
Conversion Loss
Temperature CoefficientTCCLTC = -40NC to +85NC0.0095dB/NC
Single Sideband Noise
FigureNFSSBNo blockers present8.95dB
Noise Figure Temperature
CoefficientTCNFSingle sideband, no blockers present,
TC = -40NC to +85NC0.024dB/NC
Input 1dB Compression PointIP1dB(Note 10)17.2dBm
Third-Order Input Intercept
PointIIP3fRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm26.7dBm
IIP3 Variation with TCfRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NCQ0.5dB
2RF - 2LO Spur Rejection2 x 2
fRF = 1850MHz,
fLO = 1550MHz,
fSPUR = 1700MHz
PRF = -10dBm71
dBc
PRF = 0dBm61
3RF - 3LO Spur Rejection3 x 3
fRF = 1850MHz,
fLO = 1550MHz,
fSPUR = 1650MHz
PRF = -10dBm83
dBc
PRF = 0dBm63
RF Input Return LossRLRFLO on and IF terminated into a matched
impedance12.4dB
LO Input Return LossRLLORF and IF terminated into a matched impedance17.3dB
IF Output ImpedanceZIFNominal differential impedance at the IC’s IF
outputs50I
IF Return LossRLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application Circuit
19.3dB
RF-to-IF IsolationPLO = +3dBm44.6dB
LO Leakage at RF PortPLO = +3dBm-29.5dBm
2LO Leakage at RF PortPLO = +3dBm-29.5dBm
LO Leakage at IF PortPLO = +3dBm-29.7dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 5.0V, PIF = 0dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Conversion LossLC7.3dB
Conversion Loss Variation
vs. FrequencyDLC
fRF = 2010MHz to 2025MHzQ0.05
fRF = 2305MHz to 2360MHzQ0.05
fRF = 2500MHz to 2570MHzQ0.05
fRF = 2570MHz to 2620MHzQ0.05
fRF = 2500MHz to 2690MHzQ0.15
fRF = 2700MHz to 2900MHzQ0.2
Conversion Loss
Temperature CoefficientTCCLTC = -40NC to +85NC0.007dB/NC
Input 1dB Compression Point IP1dB(Note 10)22dBm
Input Third-Order Intercept
PointIIP3fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone32.8dBm
IIP3 Variation with TCIIP3fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone,
TC = -40NC to +85NCQ0.5dB
LO Q 2IF SpurLO - 2IF61dBcLO + 2IF62
LO Q 3IF SpurLO - 3IF72dBcLO + 3IF85
Output Noise FloorPOUT = 0dBm (Note 9)-163dBm/Hz
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
Note 5: Not production tested.
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance
transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: 100% production tested for functional performance.
Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz at 100MHz offset. This specification
reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021:
Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50I source.
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
Conversion LossLC7.3dB
Conversion Loss Variation vs.
FrequencyDLCfRF = 2000MHz to 2900MHz, any 100MHz bandQ0.25dB
Conversion Loss
Temperature CoefficientTCCLTC = -40NC to +85NC0.008dB/NC
Input 1dB Compression Point IP1dB(Note 10)20.5dBm
Input Third-Order Intercept
PointIIP3fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone30dBm
IIP3 Variation with TCIIP3fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone,
TC = -40NC to +85NCQ0.6dB
LO Q 2IF SpurLO - 2IF60dBcLO + 2IF64
LO Q 3IF SpurLO - 3IF68dBcLO + 3IF80
Output Noise FloorPOUT = 0dBm (Note 9)-160dBm/Hz
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc01
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
TC = -40°C
TC = +85°C
TC = +25°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc02
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc04
INPUT IP3 (dBm)30
RF FREQUENCY (MHz)
TC = +85°C
TC = -40°C
TC = +25°C
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc05
INPUT IP3 (dBm)30
RF FREQUENCY (MHz)
PRF = 0dBm/TONE
PLO = -6dBm
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc06
INPUT IP3 (dBm)30
RF FREQUENCY (MHz)
PRF = 0dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc07
2LO - 2RF RESPONSE (dBc)
TC = -40°C
TC = +85°C
TC = +25°C
PRF = 0dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc08
2LO - 2RF RESPONSE (dBc)
PLO = -6dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
PRF = 0dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc09
2LO - 2RF RESPONSE (dBc)
PRF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX2042A toc10
3LO - 3RF RESPONSE (dBc)
RF FREQUENCY (MHz)
PRF = 0dBm
TC = -40°C, +25°C, +85°C
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX2042A toc11
3LO - 3RF RESPONSE (dBc)
RF FREQUENCY (MHz)
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
3LO - 3RF RESPONSE (dBc)
RF FREQUENCY (MHz)
PRF = 0dBm
VCC = 5.25V
VCC = 5.0VVCC = 4.75V
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc13
NOISE FIGURE (dB)
RF FREQUENCY (MHz)
TC = -40°C
TC = +85°C
TC = +25°C
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc14
NOISE FIGURE (dB)
RF FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc15
NOISE FIGURE (dB)
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc16
1dB
(dBm)
TC = -40°C
TC = +85°C
TC = +25°C
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc17
1dB
(dBm)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc18
1dB
(dBm)
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042A toc19
LO LEAKAGE AT IF PORT (dBm)
LO FREQUENCY (MHz)
TC = +85°C
TC = -40°C
TC = +25°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc27
LO LEAKAGE AT RF PORT (dBm)-35
VCC = 5.25V
VCC = 4.75VVCC = 5.0V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042A toc20
LO LEAKAGE AT IF PORT (dBm)
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc22
RF-TO-IF ISOLATION (dB)30
RF FREQUENCY (MHz)
TC = +85°C
TC = -40°CTC = +25°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc23
RF-TO-IF ISOLATION (dB)30
RF FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc24
RF-TO-IF ISOLATION (dB)30
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc25
LO LEAKAGE AT RF PORT (dBm)-35
TC = -40°C, +25°C, +85°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc26
LO LEAKAGE AT RF PORT (dBm)-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc28
2LO LEAKAGE AT RF PORT (dBm)-45
LO FREQUENCY (MHz)
TC = -40°C
TC = +85°C
TC = +25°C
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc29
2LO LEAKAGE AT RF PORT (dBm)-45
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)-45
LO FREQUENCY (MHz)
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2042A toc31
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
IF = 300MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
MAX2042A toc32
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
LO = 2900MHz
VCC = 4.75V, 5.0V, 5.25V
LO RETURN LOSS vs. LO FREQUENCY
MAX2042A toc33
LO RETURN LOSS (dB)
PLO = 0dBm
PLO = -3dBm
PLO = -6dBm
PLO = +3dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX2042A toc34
SUPPLY CURRENT (mA)3510-15
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc35
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
TC = -40°C
TC = +85°C
TC = +25°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc36
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
VCC = 3.0V, 3.3V, 3.6V
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc38
INPUT IP3 (dBm)
RF FREQUENCY (MHz)
TC = -40°C, +25°C, +85°C
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc39
INPUT IP3 (dBm)
RF FREQUENCY (MHz)
PRF = 0dBm/TONE
PLO = -6dBm, -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc40
INPUT IP3 (dBm)
RF FREQUENCY (MHz)
PRF = 0dBm/TONE
VCC = 3.6V
VCC = 3.3VVCC = 3.0V
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc41
2LO - 2RF RESPONSE (dBc)
PRF = 0dBm
TC = -40°C, +25°C, +85°C
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc42
2LO - 2RF RESPONSE (dBc)
PRF = 0dBm
PLO = -3dBm
PLO = 0dBmPLO = +3dBm
PLO = -6dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc43
2LO - 2RF RESPONSE (dBc)
PRF = 0dBm
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX2042A toc44
3LO - 3RF RESPONSE (dBc)60
RF FREQUENCY (MHz)
PRF = 0dBm
TC = -40°C, +25°C, +85°C
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX2042A toc45
3LO - 3RF RESPONSE (dBc)60
RF FREQUENCY (MHz)
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
3LO - 3RF RESPONSE (dBc)60
RF FREQUENCY (MHz)
PRF = 0dBm
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc47
NOISE FIGURE (dB)
RF FREQUENCY (MHz)
TC = -40°C
TC = +85°C
TC = +25°C
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc48
NOISE FIGURE (dB)
RF FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc49
NOISE FIGURE (dB)
RF FREQUENCY (MHz)
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc50
1dB
(dBm)
TC = -40°C
TC = +85°C
TC = +25°C
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc51
(dBm)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc52
(dBm)
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042A toc53
LO LEAKAGE AT IF PORT (dBm)
LO FREQUENCY (MHz)
TC = +85°C
TC = -40°C
TC = +25°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc61
LO LEAKAGE AT RF PORT (dBm)-35
VCC = 3.6V
VCC = 3.0VVCC = 3.3V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042A toc54
LO LEAKAGE AT IF PORT (dBm)
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO FREQUENCY (MHz)
VCC = 3.0V, 3.3V, 3.6V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc56
RF-TO-IF ISOLATION (dB)30
RF FREQUENCY (MHz)
TC = +85°C
TC = -40°C
TC = +25°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc57
RF-TO-IF ISOLATION (dB)30
RF FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc58
RF-TO-IF ISOLATION (dB)30
RF FREQUENCY (MHz)
VCC = 3.0V, 3.3V, 3.6V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc59
LO LEAKAGE AT RF PORT (dBm)-35
TC = -40°C, +25°C, +85°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc60
LO LEAKAGE AT RF PORT (dBm)-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc62
2LO LEAKAGE AT RF PORT (dBm)-45
LO FREQUENCY (MHz)
TC = -40°C
TC = +85°CTC = +25°C
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc63
2LO LEAKAGE AT RF PORT (dBm)-45
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)-45
LO FREQUENCY (MHz)
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2042A toc65
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
IF = 300MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
MAX2042A toc66
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
LO = 2900MHz
VCC = 3.0V, 3.3V, 3.6V
LO RETURN LOSS vs. LO FREQUENCY
MAX2042A toc67
LO RETURN LOSS (dB)
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
PLO = -6dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX2042A toc68
SUPPLY CURRENT (mA)3510-15
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc69
RF FREQUENCY (MHz)
TC = -40°C
CONVERSION LOSS (dB)
TC = +25°CTC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc70
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc72
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
TC = +85°C
TC = +25°C
TC = -40°C
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc73
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc74
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
PRF = 0dBm/TONE
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042A toc75
2RF - 2LO RESPONSE (dBc)
PRF = 0dBm
TC = +85°CTC = +25°C
TC = -40°C
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042A toc76
2RF - 2LO RESPONSE (dBc)
PRF = 0dBm
PLO = +3dBm
PLO = -6dBm
PLO = 0dBm
PLO = -3dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042A toc77
2RF - 2LO RESPONSE (dBc)
PRF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042A toc78
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
PRF = 0dBm
TC = -40°C, +25°C, +85°C
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042A toc79
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
PRF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc81
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
TC = +85°C
TC = +25°C
TC = -40°C
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc82
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc83
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
VCC = 4.75V, 5.0V, 5.25V
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc84
1dB
(dBm)
TC = +85°C
TC = +25°C
TC = -40°C
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc85
1dB
(dBm)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
MAX2042A toc86
1dB
(dBm)
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042A toc87
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
TC = +85°C
TC = -40°C
TC = +25°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc95
LO LEAKAGE AT RF PORT (dBm)
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042A toc88
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
VCC = 4.75V, 5.0V, 5.25V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc90
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
TC = +85°C
TC = -40°C
TC = +25°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc91
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc92
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc93
LO LEAKAGE AT RF PORT (dBm)
TC = +85°C
TC = +25°C
TC = -40°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc94
LO LEAKAGE AT RF PORT (dBm)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc96
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
TC = +85°C
TC = +25°C
TC = -40°C
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042A toc97
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
PLO = -6dBm, -3dBm
PLO = 3dBm
PLO = -0dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
VCC = 4.75V, 5.0V, 5.25V
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2042A toc99
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
IF = 300MHz
PLO = -6dBm, -3dBm, 0dBm, +3dBm
IF PORT RETURN LOSS vs. IF FREQUENCY
MAX2042A toc100
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
LO = 3200MHz
VCC = 4.75V, 5.0V, 5.25V
LO RETURN LOSS vs. LO FREQUENCY
MAX2042A toc101
LO RETURN LOSS (dB)
PLO = +3dBm
PLO = -3dBmPLO = -6dBmPLO = -0dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX2042A toc102
SUPPLY CURRENT (mA)3510-15
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc104
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc103
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
TC = +85°CTC = +25°C
TC = -40°C
CONVERSION LOSS vs. RF FREQUENCY
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc106
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
TC = +85°C
TC = +25°C
TC = -40°C
PRF = 0dBm/TONE
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc109
2LO - 2RF RESPONSE (dBc)
TC = +85°C
TC = +25°C
PRF = 0dBm
TC = -40°C
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc107
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc110
2LO - 2RF RESPONSE (dBc)
PLO = -6dBm
PLO = -3dBmPLO = +3dBmPLO = 0dBm
PRF = 0dBm
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc108
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
PRF = 0dBm/TONE
VCC = 4.75V, 5.0V, 5.25V
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX2042A toc111
2LO - 2RF RESPONSE (dBc)
PRF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED