IC Phoenix
 
Home ›  MM26 > MAX154ACNG+-MAX154ACWG+-MAX154AENG+-MAX154BCAG+-MAX154BCNG+-MAX154BCWG+-MAX158ACAI+-MAX158ACPI+-MAX158AEPI+-MAX158BCPI+-MAX158BCWI+,CMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX154ACNG+-MAX154ACWG+-MAX154AENG+-MAX154BCAG+-MAX154BCNG+ Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
MAX154ACNG+ |MAX154ACNGMAXIMN/a15avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX154ACNG+ |MAX154ACNGMAXIM/DALLASN/a4avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX154ACWG+ |MAX154ACWGMAXIMN/a538avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX154AENG+ |MAX154AENGMAXIMN/a35avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX154BCAG+ |MAX154BCAGMAXIMN/a100avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX154BCNG+MAXIMN/a1500avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX154BCWG+ |MAX154BCWGMAXIMN/a2130avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX158ACAI+ |MAX158ACAIMAXIMN/a322avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX158ACPI+ |MAX158ACPIMAXIM/DALLASN/a16avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX158ACPI+ |MAX158ACPIMAXIMN/a14avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX158AEPI+ |MAX158AEPIMAXIMN/a6avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX158BCPI+ |MAX158BCPIMAXIMN/a4avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
MAX158BCWI+ |MAX158BCWIMAXIMN/a4avaiCMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference


MAX154BCWG+ ,CMOS High-Speed, 8-Bit ADCs with Multiplexer and ReferenceApplications24 NarrowMAX154BCNG 0°C to +70°C ±1Plastic DIPDigital Signal Processing1MAX154BC/D 0°C ..
MAX154BEWG ,CMOS High-Speed 8-Bit ADCs with Multiplexer and ReferenceMAX154/MAX15819-0892; Rev 3; 12/96CMOS High-Speed 8-Bit ADCs with Multiplexer and Reference________ ..
MAX1551EZK+ ,SOT23, Dual-Input, USB/AC Adapter, 1-Cell Li+ Battery ChargersFeaturesThe MAX1551/MAX1555 charge a single-cell lithium-ion♦ Charge from USB or AC Adapter(Li+) ba ..
MAX1551EZK+T ,SOT23, Dual-Input, USB/AC Adapter, 1-Cell Li+ Battery ChargersELECTRICAL CHARACTERISTICS(V = 5V, V = 0, I = 0, C = 1µF, T = 0°C to +85°C, unless otherwise noted. ..
MAX1553ETA+ ,High-Efficiency, 40V Step-Up Converters for 2 to 10 White LEDsApplicationsing in cellular phones, PDAs, and other hand-held• Constant-Current Regulation for Even ..
MAX1553ETA+T ,High-Efficiency, 40V Step-Up Converters for 2 to 10 White LEDsFeaturesThe MAX1553/MAX1554 drive white LEDs in series with• Highly Integrated and Flexible Solutio ..
MAX4208AUA+ ,Ultra-Low Offset/Drift, Precision Instrumentation Amplifiers with REF BufferFeaturesThe MAX4208/MAX4209 ultra-low offset and drift instrumen- ● Spread-Spectrum, Auto-Zero Inst ..
MAX4208AUA+T ,Ultra-Low Offset/Drift, Precision Instrumentation Amplifiers with REF BufferApplicationsR4● Strain-Gauge AmpliiersV /2 IN-● Industrial Process Control DDV● Battery-Powered Med ..
MAX420CPA ,【15 Volt Chopper Stabilized Operational Amplifierapplications. These devices offer input offset and drift specification superior to previous "preci ..
MAX420CPA ,【15 Volt Chopper Stabilized Operational Amplifierapplications. The MAX42O (8 pin) and MAX421 (14 pin) have a maximum supply current of 2mA. The ..
MAX420CPA ,【15 Volt Chopper Stabilized Operational Amplifier19-0903, Rev f; 2/94
MAX4210BEUA+ ,High-Side Power and Current MonitorsELECTRICAL CHARACTERISTICS(V = 5.0V, V = 25V, V = 5mV, V = 1.0V, V = 0V, R = R = 1MΩ, V = V = V , V ..


MAX154ACNG+-MAX154ACWG+-MAX154AENG+-MAX154BCAG+-MAX154BCNG+-MAX154BCWG+-MAX158ACAI+-MAX158ACPI+-MAX158AEPI+-MAX158BCPI+-MAX158BCWI+
CMOS High-Speed, 8-Bit ADCs with Multiplexer and Reference
_______________General Description
The MAX154/MAX158 are high-speed multi-channel
analog-to-digital converters (ADCs). The MAX154 has
four analog input channels while the MAX158 has eight
channels. Conversion time for both devices is 2.5μs.
The MAX154/MAX158 also feature a 2.5V on-chip refer-
ence, forming a complete high-speed data acquisition
system.
Both converters include a built-in track/hold, eliminating
the need for an external track/hold. The analog input
range is 0V to +5V, although the ADC operates from a
single +5V supply.
Microprocessor interfaces are simplified by the ADC’s
ability to appear as a memory location or I/O port without
the need for external logic. The data outputs use latched,
three-state buffer circuitry to allow direct connection to a
microprocessor data bus or system input port.
________________________Applications

Digital Signal Processing
High-Speed Data Acquisition
Telecommunications
High-Speed Servo Control
Audio Instrumentation
____________________________Feature
One-Chip Data Acquisition SystemFour or Eight Analog Input Channels2.5μs per Channel Conversion TimeInternal 2.5V ReferenceBuilt-In Track/Hold Function1/2LSB Error SpecificationSingle +5V Supply OperationNo External ClockNew Space-Saving SSOP Package
______________Ordering InformationOS High-Speed 8-Bit ADCs witultiplexer and Referenc

VDD
N.C.AIN1
AIN2
AIN3
AIN4
TOP VIEW
DB7
DB6
DB5
DB4DB2
DB1
DB0
REF OUT
RDY
VREF+
VREF-GND
INT
DB3
DIP/SO/SSOP

MAX154
AIN7
AIN8
VDDAIN3
AIN4
AIN5
AIN6
DB7
DB6DB0
REF OUT
AIN1
AIN2
DB5
DB4
RDYRD
DB3
DB2
DB1
DIP/SO/SSOP

MAX158
VREF+
VREF-GND
INT
__________________________________________________________Pin Configurations

19-0892; Rev 3; 12/96
PART
MAX154ACNG

MAX154BCNG
MAX154BC/D0°C to +70°C
0°C to +70°C
0°C to +70°C
TEMP. RANGEPIN-PACKAGE

24 Narrow
Plastic DIP
24 Narrow
Plastic DIP
Dice
MAX154ACWG
MAX154BCWG
MAX154ACAG0°C to +70°C
0°C to +70°C
0°C to +70°C24 Wide SO
24 Wide SO
24 SSOP
Ordering Information continued at end of data sheet.
ERROR
(LSB)

±1/2
±1/2
±1/2
±1/2
MAX154BCAG0°C to +70°C24 SSOP±1
OS High-Speed 8-Bit ADCs with ultiplexer and ReferenceABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS

(VDD= +5V, VREF+= +5V, VREF-= GND, Mode 0, TA= TMINto TMAX, unless otherwise noted).
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage, VDDto GND.........................................0V, +10V
Voltage at Any Other Pins........................GND -0.3V, VDD+0.3V
Output Current (REF OUT)..................................................30mA
Power Dissipation (any package) to +75°C ....................450mW
Derate above +25°C by..............................................6mW/°C
Operating Temperature Ranges
MAX15_ _C_ _.....................................................0°C to +70°C
MAX15_ _E_ _..................................................-40°C to +85°C
MAX15_ _M_ _...............................................-55°C to +125°C
Storage Temperature Range.............................-65°C to +160°C
Lead Temperature (soldering, 10sec).............................+300°C
Input Capacitance (Note 4)CIN58pF
Input Low VoltageVINL0.8V
Input High CurrentIINH1μA
Input Low CurrentIINL-1μA
Analog Input CurrentIAIN±3μA
Slew Rate, TrackingSR0.70.157V/μs
Input High VoltageVINH2.4V
Any channel, AIN = 0V to 5V
Output NoiseeN200μV/rms
Capacitive Load0.01μF
Analog Input Voltage RangeAINRVREF-VREF+V
Analog Input CapacitanceCAIN45pFMAX15_B
PARAMETERSYMBOLMINTYPMAXUNITS

Channel-to-Channel Mismatch±1/4LSB
No-Missing-Codes Resolution8Bits
Total Unadjusted Error (Note 1)±1/2LSB
Reference Resistance14kΩ
VREF+ Input Voltage RangeVREF-VDDV
VREF- Input Voltage RangeGNDVREF+V
Resolution8Bits
Output VoltageREF OUT2.472.502.53V
Load Regulation-6-10mV
Power-Supply Sensitivity±1±3mV7070Temperature Drift (Note 3)100
ppm/°C
CONDITIONS
= +25°C
MAX15_A
ACCURACY
REFERENCE INPUT
REFERENCE OUTPUT (Note 2)
ANALOG INPUT
LOGIC INPUTS (–R—D–, –C—S–, A0, A1, A2)
= 0mA to 10mA, TA= +25°C
VDD±5%, TA= +25°C
MAX15_ _C
MAX15_ _E
MAX15_ _M
ELECTRICAL CHARACTERISTICS (continued)
(VDD= +5V, VREF+= +5V, VREF-= GND, MODE 0, TA= TMINto TMAX, unless otherwise noted).
TIMING CHARACTERISTICS (Note 5)

(VDD= +5V, VREF+= +5V, VREF-= GND, MODE 0, TA= TMINto TMAX, unless otherwise noted).
Note 5:
All input control signals are specified with tR= tF= 20ns (10% to 90% of +5V) and timed from a 1.6V voltage level.
Note 6:
Measured with load circuits of Figure 1 and defined as the time required for an output to cross 0.8V or 2.4V.
Note 7:
Defined as the time required for the data lines to change 0.5V when loaded with the circuits of Figure 2.OS High-Speed 8-Bit ADCs witultiplexer and Referenc
(Note 6)
(Note 6)= 50pF, RL= 5kΩ
(Note 7)= 50pF
CONDITIONS
60tDHData Hold Time4075tINTHRDto INTDelay (Mode 1)0tCSH0tCSSCSto RDSetup Timeto RDHold Time2050tACC2Data Access Time
After INT, Mode 085tACC1Data Access Time After RD1.62.0tCRDConversion Time (Mode 0)3040tRDYCSto RDY Delay0tASMultiplexer Address
Setup Time30tAHMultiplexer Address
Hold Time
UNITS
MINTYPMAX
SYMBOL
500tPDelay Time
Between Conversions500
MAX15_C/E
MAX15_M
MINMAXMINMAX60600tRDRDPulse Width (Mode 1)8050080400
DB0-DB7, INT; IOUT= -360μA= RD= 2.4V
5V ±5% for specified performance
DB0-DB7, INT; RDY
DB0-DB7, RDY; VOUT= 0V to VDD
VDD= ±5%
CONDITIONS

LSB±1/16±1/4PSSPower-Supply Sensitivity4.0VOHOutput High Voltage2575Power Dissipation15IDDSupply Current4.755.25VDDSupply Voltage
0.4V0.4VOLOutput Low Voltage±3Three-State Output Current58COUTOutput Capacitance (Note 4)
UNITSMINTYPMAXSYMBOLPARAMETER

IOUT= 1.6mA
IOUT= 2.6mA
LOGIC OUTPUTS
POWER-SUPPLY
PARAMETERTA= +25°C
Note 1:
Total unadjusted error includes offset, full-scale, and linearity errors.
Note 2:
Specified with no external load unless otherwise noted.
Note 3:
Temperature drift is defined as change in output voltage from +25°C to TMINor TMAXdivided by (25 - TMIN) or (TMAX- 25).
Note 4:
Guaranteed by design.
OS High-Speed 8-Bit ADCs with ultiplexer and Reference__________________________________________Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
REFERENCE TEMPERATURE DRIFT
MX7824/28-1
AMBIENT TEMPERATURE (°C)
(V
OUTPUT CURRENT
vs. TEMPERATURE
X7824/28-2
AMBIENT TEMPERATURE (°C)
(m
VDD = 5V
ISOURCE VOUT = 2.4V
ISINK VOUT = 0.4V
ACCURACY
vs. DELAY BETWEEN CONVERSIONS (tp)
MX7824/28-3
tp (ns)
(L
VDD = 5V
VREF = 5V
ACCURACY vs. VREF
[VREF = VREF(+) - VREF(-)]
X7824/28-4
VREF (V)
(L412
VDD = 5V
100pF
DGND
DBN
a. High-Z to VOHb. High-Z to VOL
DBN
+5V
DGND
10pF3k
100pF
DGND
DBN
a. High-Z to VOHb. High-Z to VOL
DBN
+5V
DGND
10pF
POWER-SUPPLY CURRENT vs. TEMPERATURE
(NOT INCLUDING REFERENCE LADDER)
X7824/28-5
AMBIENT TEMPERATURE (°C)
(m100-500
VDD = 5.25V
VDD = 5V
VDD = 4.75V
Figure 1. Load Circuits for Data-Access Time TestFigure 2. Load Circuits for Data-Hold Time Test
OS High-Speed 8-Bit ADCs witultiplexer and ReferencReference Output (2.5V) for MAX154REF OUT5
Three-State Data Output, bit 0 (LSB)DBO6
Three-State Data Output, bit 1DB17
Analog Input Channel 1AIN14
Analog Input Channel 2AIN23
Analog Input Channel 3AIN32
Analog Input Channel 4AIN41
_____________________________________________________________Pin Descriptions

Three-State Data Output, bit 2DB28
Three-State Data Output, bit 3DB39
Read Input. RDcontrols conversions and
data access. See Digital Interfacesection.RD10
Three-State Data Output, bit 7 (MSB)DB720
GroundGND12
Lower Limit of Reference Span. Sets
the zero-code voltage.
Range: GND toVREF+.
VREF-13
Interrupt Output. INTgoing low indi-
cates the completion of a conversion.
See Digital Interfacesection.
INT11
Chip-Select Input. CSmust be low for
the device to be selected.CS16
Three-State Data Output, bit 4DB417
Three-State Data Output, bit 5DB518
Three-State Data Output, bit 6DB619
Interrupt Output. INTgoing low indi-
cates the completion of a conversion.
See Digital Interfacesection.
INT13
GroundGND14
Analog Input Channel 2AIN25
Analog Input Channel 1AIN16
Reference Output (2.5V) for MAX158 REF OUT7
Analog Input Channel 3AIN34
Analog Input Channel 4AIN43
Analog Input Channel 5AIN52
Analog Input Channel 6AIN61
Three-State Data Output, bit 0 (LSB)DB08
Three-State Data Output, bit 1DB19
Three-State Data Output, bit 2DB210
Three-State Data Output, bit 3DB311
Lower Limit of Reference Span. Sets
the zero-code voltage.
Range: GND toVREF+.
VREF-15
Read Input. RDcontrols conversions
and data access.
See Digital Interfacesection.12
Ready Output. Open-drain output with
no active pull-up device. Goes low
when CSgoes low and high imped-
ance at the end of a conversion.
RDY17
Power-Supply Voltage, +5VVDD26
Channel Address 2 InputA223
Channel Address 1 InputA124
Channel Address 0 InputA025
Upper Limit of Reference Span. Sets
the full-scale input voltage.
Range: VREF- to VDD.
VREF+14
Ready Output. Open-drain output with
no active pull-up device. Goes low
when CSgoes low and high imped-
ance at the end of a conversion.
RDY15
Power-Supply Voltage, +5VVDD24
Channel Address 1 InputA121
Channel Address 0 InputA022
No ConnectNC23
Three-State Data Output, bit 7 (MSB)DB722
Chip-Select input. –CSmust be low for
the device to be selected.CS18
Three-State Data Output, bit 4DB419
Three-State Data Output, bit 5DB520
Three-State Data Output, bit 6DB621
Analog Input Channel 8AIN827
Analog Input Channel 7AIN728
Upper Limit of Reference Span. Sets
the full-scale input voltage.
Range: VREF- to VDD.
VREF+16
PIN
MAX154FUNCTIONNAMEPIN
MAX158FUNCTIONNAME
OS High-Speed 8-Bit ADCs with ultiplexer and Reference_______________Detailed Description
Converter Operations

The MAX154/MAX158 use what is commonly called a
"half-flash" conversion technique (Figure 3). Two 4-bit
flash ADC converter sections are used to achieve an 8-
bit result. Using 15 comparators, the upper 4-bit MS
(most significant) flash ADC compares the unknown
input voltage to the reference ladder and provides the
upper four data bits.
An internal DAC uses the MS bits to generate an analog
signal from the first flash conversion. A residue voltage
representing the difference between the unknown input
and the DAC voltage is then compared to the reference
ladder by 15 LS (least significant) flash comparators to
obtain the lower four output bits.
Operating Sequence

The operating sequence is shown in Figure 4. A conver-
sion is initiated by a falling edge of RDand CS. The
comparator inputs track the analog input voltage for
approximately 1μs. After this first cycle, the MS flash
result is latched into the output buffers and the LS con-
version begins. INTgoes low approximately 600ns later,
indicating the end of the conversion, and that the lower
four bits are latched into the output buffers. The data
can then be accessed using the CSand RDinputs.
___________________Digital Interface

The MAX154/MAX158 use only Chip Select (CS) and
Read (RD) as control inputs. A READ operation, takingand RDlow, latches the multiplexer address inputs
and starts a conversion (Table 1).
There are two interface modes, which are determined
by the length of the RDinput. Mode 0, implemented by
keeping RDlow until the conversion ends, is designed
for microprocessors that can be forced into a WAIT
state. In this mode, a conversion is started with a READ
operation (taking CSand RDlow), and data is read
when the conversion ends. Mode 1, on the other hand,
does not require microprocessor WAIT states. A READ
operation simultaneously initiates a conversion and
reads the previous conversion result.
4-BIT
DAC
THREE-
STATE
DRIVERS
ADDRESS
LATCH
DECODE
4-BIT
FLASH
ADC
(4LSB)
4-BIT
FLASH
ADC
(4MSB)
2.5V
REF
TIMING AND CONTROL
CIRCUITRY
MUX*
VREF+
VREF+*MAX154 – 4-Channel Mux
MAX158 – 8-Channel MuxA2RDYCSRD
AIN1
AIN4
AIN8
REF OUT
VREF-
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
INT
MAX154/MX7824A0
MAX158/MX7828A1A0
SELECTED
CHANNEL
010100011011
AIN1
AIN2
AIN3
AIN4
Figure 3. Functional Diagram
Table 1. Truth Table for Input ChannelSelection
00011011
AIN5
AIN6
AIN7
AIN8
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED