IC Phoenix
 
Home ›  MM22 > MAX11209EVKIT+,Evaluation Kits for the MAX11200, MAX11206, MAX11209, MAX11210, and MAX11213
MAX11209EVKIT+ Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
MAX11209EVKIT+N/AN/a2500avaiEvaluation Kits for the MAX11200, MAX11206, MAX11209, MAX11210, and MAX11213


MAX11209EVKIT+ ,Evaluation Kits for the MAX11200, MAX11206, MAX11209, MAX11210, and MAX11213features of the MAX11200 family of data converters. The EV kits are S Real-Time Data Acquisition t ..
MAX1124EGK+D ,1.8V, 10-Bit, 250Msps Analog-to-Digital Converter with LVDS Outputs for Wideband ApplicationsELECTRICAL CHARACTERISTICS(AV = OV = 1.8V, V = V = 0, f = 250MHz, differential sine-wave clock inpu ..
MAX1132BCAP ,16-Bit ADC, 200ksps, 5V Single-Supply with Referenceapplications. The MAX1132 accepts input signals of 0to +12V (unipolar) or ±12V (bipolar), while the ..
MAX1132BCAP+ ,16-Bit ADC, 200ksps, 5V Single-Supply with ReferenceMAX1132/MAX113319-2083; Rev 0; 8/0116-Bit ADC, 200ksps, 5V Single-Supplywith Reference
MAX1132BCAP+ ,16-Bit ADC, 200ksps, 5V Single-Supply with ReferenceApplicationsOrdering Information continued at end of data sheet.Industrial Process ControlIndustria ..
MAX1132BCAP+ ,16-Bit ADC, 200ksps, 5V Single-Supply with Referenceapplications. The MAX1132 accepts input signals of 0to +12V (unipolar) or ±12V (bipolar), while the ..
MAX3480BCPI+ ,Complete, Isolated, 3.3V RS-485/RS-422 Data Interface
MAX3480BCPI+ ,Complete, Isolated, 3.3V RS-485/RS-422 Data Interface
MAX3480BCPI+ ,Complete, Isolated, 3.3V RS-485/RS-422 Data Interface
MAX3483CPA ,3.3V-Powered / 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers
MAX3483CPA+ ,3.3V Powered, 10Mbps and Slew-Rate Limited, True RS-485/RS-422 Transceivers
MAX3483CSA ,3.3V-Powered / 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers


MAX11209EVKIT+
Evaluation Kits for the MAX11200, MAX11206, MAX11209, MAX11210, and MAX11213
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
General Description
The MAX11200, MAX11206, MAX11209, MAX11210,
and MAX11213 evaluation kits (EV kits) consist of
one MAX11200, MAX11206, MAX11209, MAX11210,
or MAX11213 evaluation board and software. The EV
kits are fully assembled and tested circuit boards that
evaluate the MAX11200 family of ultra-low-power, high-
resolution, serial output ADCs.
The EV kits include Windows XPM-, Windows VistaM-,
and WindowsM 7-compatible software that provides a
graphical user interface (GUI) for exercising the features
of the MAX11200 family of data converters. The EV kits are
connected to a PC through a USB A-to-B cable.
FeaturesWindows XP-, Windows Vista-, and Windows
7-Compatible SoftwareUSB-PC Connection (Cable Included)USB Powered (No External Power Supply
Required)On-Board Isolated Power Supplies Rejecting
Power Line NoiseOn-Board Optocouplers Isolating ADC from Other
CircuitryReal-Time Data Acquisition through USBProven PCB Layout
Ordering Information
Windows, Windows XP, and Windows Vista are registered
Component List
Selector Guide
19-5509; Rev 0; 9/10
+Denotes lead(Pb)-free and RoHS compliant.
PARTTYPE
MAX11200EVKIT+EV Kit
MAX11206EVKIT+EV Kit
MAX11209EVKIT+EV Kit
MAX11210EVKIT+EV Kit
MAX11213EVKIT+EV Kit
PARTRESOLUTIONPROGRAMMABLE
GAIN
MAX11200EEE+24N/A
MAX11206EEE+201–128
MAX11209EEE+181–128
MAX11210EEE+241–16
MAX11213EEE+161–128
DESIGNATIONQTYDESCRIPTION1
10FF Q20%, 6.3V X5R ceramic
capacitor (0603)
Murata GRM188R60J106M1
0.01FF Q10%, 16V X7R ceramic
capacitor (0603)
Murata GRM188R71C 103K
C3–C10, C13,
C14, C15, C17,
C18, C33
0.1FF Q10%, 25V X7R ceramic
capacitors (0603)
Murata GRM188R71E104K
C11, C122
1000pF Q10%, 50V X7R ceramic
capacitors (0603)
Murata GRM188R71H102K
C16, C19, C20,
C29–C327
4.7FF Q10%, 10V X5R ceramic
capacitors (0805)
Murata GRM219R61A475K
DESIGNATIONQTYDESCRIPTION
C21, C24, C25,
C284
1FF Q10%, 16V X7R ceramic
capacitors (0603)
Murata GRM188R71C105K
C22, C23, C26,
C274
18pF Q5%, 50V C0G ceramic
capacitors (0603)
Murata GRM1885C1H180J
C34–C370Not installed, ceramic capacitors
(0805)
D1–D4430V, 1A Schottky diodes
(SOD123)115V zener diode (DO35) 1Green LED (0603)1Red LED (0603)
FB11
120 at 100MHz, 200mA ferrite
bead (0603)
Murata BLM18RK121SN1
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
Component List (continued)
*EP = Exposed pad.
DESIGNATIONQTYDESCRIPTION112-position terminal block1BNC PC-mount connector1USB type-B right-angle
receptacle0Not installed, 10-pin (2 x 5)
header
JU114-pin header
JU2–JU543-pin headers
JU6, JU7, JU1032-pin headers
JU8, JU9212-pin (2 x 6) headers1100I Q5% resistor (0603)
R2, R3, R43180I Q5% resistors (0603)
R5–R84330I Q5% resistors (0603)147kI Q5% resistor (0603)
R10, R142360I Q5% resistors (0603)
R11, R12233.2I Q1% resistors (0603)
R13110kI Q5% resistor (0603)
R15110.5kI Q1% resistor (0603)
R1616.49kI Q1% resistor (0603)
R171100kI Q5% resistor (0603)
R18, R19210kI Q1% resistors (0603)
R20–R2340I Q5% resistors (0603)1
198FH, 3W, 1:1:2.6:2.6-turn
400kHz transformer
HALO Electronics TGM-H281NF
TP1, TP32Red multipurpose test points
TP2, TP42Black multipurpose test points
TP5–TP139Orange miniature test points1See the EV Kit-Specific
Component List 1
4:1 analog multiplexer
(16 TSSOP)
Maxim MAX4782EUE+1
High-precision, low-noise voltage
reference (8 FMAXM)
Maxim MAX6126A30+
DESIGNATIONQTYDESCRIPTION
U4, U5, U63High-speed optocouplers (8 DIP)1H-bridge driver (8 SO-EP*)
Maxim MAX256ASA+1Linear regulator (8 SO)
Maxim MAX1659ESA+1Linear regulator (8 SO)
Maxim MAX1658ESA+
U101
USB peripheral controller
(24 TQFN-EP*)
Maxim MAX3420EETG+
U111Microcontroller (68 QFN-EP*)
Maxim MAXQ2000-RAX+
U1212.5V LDO regulator (5 SC70)
Maxim MAX8511EXK25+
U131
Adjustable LDO regulator
(6 SOT23)
Maxim MAX8880EUT+1
2.4576MHz clock oscillator
Hong Kong X’tals
C4L24576NSMI02601-01
2.048MHz clock oscillator
Hong Kong X’tals
C4L20480NSMI02601-01
12MHz crystal
Hong Kong X’tals
SSM12000N1HK188F0-01
20MHz crystal
Hong Kong X’tals
SSM20000NSMI02801-01 USB high-speed A-to-B cable10Shunts1PCB: MAX11200/11206/11209/1
1210/11213 EVALUATION KIT+
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
Note: Indicate that you are using the MAX11200, MAX11206, MAX11209, MAX11210, or MAX11213 when contacting these
component suppliers.
Component Suppliers
MAX11200/MAX11206/MAX11209/MAX11210/MAX11213 EV Kit Files
EV Kit-Specific Component List
Quick Start
Recommended EquipmentMAX11200, MAX11206, MAX11209, MAX11210, or
MAX11213 EV kit (USB A-to-B cable included)Windows XP, Windows Vista, or Windows 7 PC with
a spare USB portHigh-precision digital voltmeter (DVM)
Refer to the MAX11200/MAX11210, MAX11203/
MAX11213, MAX11206/MAX11207, and MAX11209/
MAX11211 IC data sheets while using this EV kit for
detailed descriptions of the device features.
Note: In the following sections, software-related items
are identified by bolding. Text in bold refers to items
directly from the EV kit software. Text in bold and under-
Procedure
The EV kits are fully assembled and tested. Follow
the steps below to verify board operation before
exercising the full features of the MAX11200 family of data
converters:
1) Verify that all the jumpers are set in their default
positions (see Table 3).
2) Visit /evkitsoftware to down-
load the latest version of the EV kit software,
11200_06_09_10_13Rxx.ZIP.
3) Install the evaluation software on your computer
by running the INSTALL.EXE program. The pro-
gram files are copied and icons are created in the
Windows Start | Programs menu.
4) Connect the USB cable from the PC to the EV kit
PARTDESIGNATIONDESCRIPTION
MAX11200EVKIT+
24-bit single-channel ADC (16 QSOP)
Maxim MAX11200EEE+
MAX11206EVKIT+20-bit single-channel ADC (16 QSOP)
Maxim MAX11206EEE+
MAX11209EVKIT+18-bit single-channel ADC (16 QSOP)
Maxim MAX11209EEE+
MAX11210EVKIT+24-bit single-channel ADC (16 QSOP)
Maxim MAX11210EEE+
MAX11213EVKIT+16-bit single-channel ADC (16 QSOP)
Maxim MAX11213EEE+
SUPPLIERPHONEWEBSITE
HALO Electronics, Inc.650-903-3800www.haloelectronics.com
Hong Kong X’tals Ltd.852-35112388www.hongkongcrystal.com
Murata Electronics North America, Inc.770-436-1300www.murata-northamerica.com
FILEDESCRIPTION
INSTALL.EXEInstalls the EV kit files on your computer
11200_06_09_10_13.EXEApplication program
UNINST.INIUninstalls the EV kit software
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
5) Verify that green LED D6 on the EV kit board
illuminates, indicating the isolated power supply is
good.
6) Verify that red LED D7 on the EV kit board
illuminates, indicating the microcontroller has
successfully finished the board self-test.
7) Start the EV kit software by opening its icon in the
Windows Start | Programs menu.
8) A Device Select window pops up. Select the device
variant installed on the EV kit board and press the
OK button (Figure 1).
9) The software automatically configures the device
to perform a self-calibration and enables the use of
the self-calibration offset and self-calibration gain
values when computing the final offset and gain-
corrected data value (set the CTRL3 register to
0x18).
10) The EV kit software main window appears (Figure
2). Verify that Hardware: Connected is displayed
on the status bar at the bottom of the main window.
11) Press the Start Conversion & Data Logging
button. The software switches to the Data Analysis
tab (Figure 3), displaying the scope of the sampled
data.
Figure 1. MAX11200/MAX11206/MAX11209/MAX11210/MAX11213 EV Kit Software (Device Select Window)
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
Calibration Notes
The user MUST perform at least one calibration (either
self-calibration and/or system calibration) before any
measurement. Refer to the MAX11200/MAX11210,
MAX11203/MAX11213, MAX11206/MAX11207, and
MAX11209/MAX11211 IC data sheets for calibration
details. The following calibration procedure details how
to use all the calibration registers in a measurement.
1) To perform a self-calibration (both offset and gain):
a. This is a conversion with internally shorted
inputs, which is done by the internal state
machine. No user manual action is required.
That is, JU9 and JU8 shunt positions can be
anywhere.
b. In the CAL1, CAL0 group box, select the
01 – Self Calibration radio button.
c. In the IMPD group box, select the
0 – Calibration/Conversion radio button.
d. Press the Send button. The device performs a
self-calibration.
2) To perform a system calibration, a system offset
calibration must be performed first:
a. This is a conversion with the inputs held at
system zero. For the EV kit, one option is to
place the shunt on JU9 across pins 7-8 (AINP =
GND) and place the shunt on JU8 across pins
7-8 (AINN = GND). In the case of a user system,
the user should apply the target system zero to
the AINN and AINP inputs.
b. In the CAL1, CAL0 group box, select the
10 – System Offset Calibration radio button.
c. In the IMPD group box, select the
0 – Calibration/Conversion radio button.
d. In the CTRL3 register row, type 18 in the Write
Value edit box to enable SCOC and SCGC
registers. Press the Write button.
e. Press the Send button. The device performs system offset calibration with self-calibration
registers enabled.
3) The second step of the system calibration is to
perform a system gain calibration. The SOC register
must be enabled before a system gain calibration
is performed.
a. This is a conversion with the inputs held at
system full-scale reference. For the EV kit, one
option is to place the shunt on JU9 across pins
1-2 (AINP = REFP = 3.0V) and place the shunt
on JU8 across pins 3-4 (AINN = REFN = GND).
In the case of a user system, the user should
apply the target system full-scale reference to
the AINP and AINN inputs.
b. In the CAL1, CAL0 group box, select the
11 – System Gain Calibration radio button.
c. In the IMPD group box, select the
0 – Calibration/Conversion radio button.
d. In the CTRL3 register row, type 10 in the Write
Value edit box to enable the system offset
register and the self-calibration registers. Press
the Write button.
e. Press the Send button. The device performs a
system gain calibration.
4) To enable the calibration coefficients:
a. In the CTRL3 register row, type 00 in the Write
Value edit box. Press the Write button. All the
self and system calibration gain and offset
values are used in the calculation of the
conversion result.
5) Continue to perform a measurement by connecting
AINP and AINN to the measurement target.
Programmable Gain Register Bits
In the CTRL3 register of the MAX11206, MAX11209,
MAX11210, and MAX11213 devices, there are 3 digital
gain bits that control the input-referred gain. The user
can change the gain by typing a new value in the CTRL3
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
register row’s Write Value edit box and pressing the
Write button. Decoding of programmable gain bits is
listed in Tables 1 and 2.
Detailed Description of Software
Software Main Window
In the top section of the main window, an SPIK
command byte can be generated. Select the expected
bit values and press the Send button to send the
command to the ADC.
In the middle section of the main window, SPI register
access commands can be generated. On each register
row, the register bit names are listed. Press the Read
button to read the register value. Type in a new value in
the Write Value edit box, and press the Write button to
write a new value to the register. Every write operation is
automatically followed by a readback operation to verify
that the write operation is successful. Press the Read All
button to read all the register values. Press the Write All
button to write all the new values in the edit boxes to the
registers.
The CLK Selection group box lists the clock input
options for the MAX11200 family of data converters.
The Conversion Mode group box is a duplicate for the
SCYCLE register bit.
In the REFP, REFN, AVDD group box, the factory-set
AVDD and reference voltages are listed. The user can
apply user-supplied AVDD and reference voltages,
type in the new values, and press Enter to update these
values for conversion-result calculation.
In the Number of Samples Requested edit box, type in
the number of samples expected.
Press the Start Conversion & Data Logging
button to start a data-acquisition session. For continuous
conversion mode, the user can discard the first 3
samples by checking the Do not log the first 3 samples
checkbox.
Press the Stop Conversion & Data Logging button to
stop the data-acquisition session before the requested
number of samples is reached.
After a data-acquisition session is complete or stopped
by the user, the software displays a popup window
(Figure 4) asking if the user wants to save the data to file. If the user presses the Yes button, the software
displays a Save As window (Figure 5) to let the user
input the file information for logged data.
In the bottom section of the main window, EV kit and
device status are displayed.
Table 1. MAX11206/MAX11209/MAX11213
DGAIN[2:0] Decoding
Table 2. MAX11210 DGAIN[2:0] Decoding
Figure 4. MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 EV Kit Software (Save Data Information Popup
Window)
GAINDGAIN2DGAIN1DGAIN0000001010011100101110
GAINDGAIN2DGAIN1DGAIN0000001010011100101110111
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
Figure 5. MAX11200/MAX11206/MAX11209/MAX11210/MAX11213 EV Kit Software (Save As Window)
Data Analysis Tab
The Data Analysis tab sheet (Figure 3) shows the
waveform scope of the sampled signal. The user can
load previous logged data to view the signal waveform
by pressing the Load Log File… button. The user can
zoom in and zoom out the scope. The user can also save
and print the scope screenshot.
The user can select the Y axis of the scope to be the
ADC conversion counts or the calculated voltage values.
When the device works in fast continuous-conversion
mode, avoid frequently moving the mouse over the
scope. Doing data analysis while data acquisition is in
progress can cause data loss because the PC may not
have enough processing power for multitasking.
Logged Data
Figure 6 shows a sample of logged data (*.csv) opened
in the Microsoft ExcelM spreadsheet. Figure 7 shows
the same file opened in the Microsoft Notepad. Use
monospaced fonts (such as Courier or Lucida Console)
to open the file for clear alignment.
MAX11200/MAX11206/MAX11209/MAX11210/
MAX11213 Evaluation Kits
Evaluate:
MAX11200/11206/11209/11210/11213
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED