IC Phoenix
 
Home ›  MM8 > M34C02-LDW6T-M34C02-RDW6-M34C02-WDW6T,2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence Detect
M34C02-LDW6T-M34C02-RDW6-M34C02-WDW6T Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
M34C02-LDW6T |M34C02LDW6TSTN/a1502avai2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence Detect
M34C02-RDW6 |M34C02RDW6STN/a20000avai2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence Detect
M34C02-WDW6T |M34C02WDW6TSTN/a4000avai2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence Detect


M34C02-RDW6 ,2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence DetectAbsolute Maximum Ratings . . . . . . . 14DC AND AC PARAMETERS . 15Table 7. Operating Cond ..
M34C02-WDW6T ,2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence DetectLogic DiagramVCC Note: See PACKAGE MECHANICAL section for package dimen-sions, and how to identify ..
M34C02-WDW6TP , 2 Kbit Serial I²C Bus EEPROM for DIMM serial presence detect
M34C02-WMN6T ,2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence DetectLogic Diagramaccess speed, its size, its organization) can bekept write protected in the first half ..
M34D64-WMN6 ,64 KBIT SERIAL I²C BUS EEPROM WITH HARDWARE WRITE CONTROL ON TOP QUARTER OF MEMORYLogic DiagramSCL Serial ClockVCCWC Write ControlV Supply VoltageCCV Ground3 SSE0-E2 SDAM34D64Power ..
M34D64-WMN6P , 64 Kbit serial I²C bus EEPROM with hardware write control on top quarter of memory
M54122L- , EARTH LEAKAGE CURRENT DETECTOR
M54125P , EARTH LEAKAGE CURRENT DETECTOR
M54128L , EARTH LEAKAGE CURRENT DETECTOR
M-542CT , DC Line Fileters
M-542CT , DC Line Fileters
M54410P , KEY CONTROLLER FOR TAPE DECK


M34C02-LDW6T-M34C02-RDW6-M34C02-WDW6T
2 Kbit Serial IC Bus EEPROM For DIMM Serial Presence Detect
1/27November 2004
M34C02

2 Kbit Serial I²C Bus EEPROM
For DIMM Serial Presence Detect
FEATURES SUMMARY
Software Data Protection for lower 128 BytesTwo Wire I2C Serial Interface100kHz and 400kHz Transfer RatesSingle Supply Voltage:2.5 to 5.5V up to 400kHz for M34C02-W2.2 to 5.5V up to 400kHz for M34C02-L1.8 to 5.5V up to 100kHz for M34C02-R1.7 to 3.6V up to 100kHz for M34C02-FBYTE and PAGE WRITE (up to 16 bytes)RANDOM and SEQUENTIAL READ ModesSelf-Timed Programming CycleAutomatic Address IncrementingEnhanced ESD/Latch-Up ProtectionMore than 1 Million Erase/Write CyclesMore than 40 Year Data Retention
Table 1. Product List
M34C02
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Table 1.Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 1.Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Figure 2.Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Figure 3.DIP, TSSOP and MLP Connections (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Table 2.Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Serial Clock (SCL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Serial Data (SDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Chip Enable (E0, E1, E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Figure 4.Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus . . . . . . . . . . . . . . . .5
Figure 5.I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Table 3.Device Select Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
DEVICE OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Table 4.Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 6.Setting the Write Protection Register (WC = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Setting the Software Write-Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Figure 7.Result of Setting the Write Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 8.Write Mode Sequences in a Non Write-Protected Area . . . . . . . . . . . . . . . . . . . . . . . . . .9
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Figure 9.Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Figure 10.Read Mode Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Random Address Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Acknowledge in Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
USE WITHIN A DRAM DIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3/27
M34C02
Programming the M34C02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Table 5.DRAM DIMM Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Figure 11.Serial Presence Detect Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Table 6.Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Table 7.Operating Conditions (M34C02-W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 8.Operating Conditions (M34C02-L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 9.Operating Conditions (M34C02-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 10.Operating Conditions (M34C02-F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 11.AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 12.AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 12.Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 13.DC Characteristics (M34C02-W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 14.DC Characteristics (M34C02-L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 15.DC Characteristics (M34C02-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 16.DC Characteristics (M34C02-F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 17.AC Characteristics (M34C02-W, M34C02-L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 18.AC Characteristics (M34C02-R, M34C02-F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 13.AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Figure 14.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . .21
Table 19.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . .21
Figure 15.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 20.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,
Package Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 16.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . .23
Table 21.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data. . . . . . . . . . . .23
Figure 17.TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Outline . . . .24
Table 22.TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Data . . . . . .24
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Table 23.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Table 24.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
M34C02
SUMMARY DESCRIPTION
5/27
M34C02
SIGNAL DESCRIPTION
Serial Clock (SCL)

This input signal is used to strobe all data in and
out of the device. In applications where this signal
is used by slave devices to synchronize the bus to
a slower clock, the bus master must have an open
drain output, and a pull-up resistor can be con-
nected from Serial Clock (SCL) to VCC. (Figure 4.
indicates how the value of the pull-up resistor can
be calculated). In most applications, though, this
method of synchronization is not employed, and
so the pull-up resistor is not necessary, provided
that the bus master has a push-pull (rather than
open drain) output.
Serial Data (SDA)

This bi-directional signal is used to transfer data in
or out of the device. It is an open drain output that
may be wire-OR’ed with other open drain or open
collector signals on the bus. A pull up resistor must
be connected from Serial Data (SDA) to VCC. (Fig-
ure 4. indicates how the value of the pull-up resis-
tor can be calculated).
Chip Enable (E0, E1, E2)

These input signals are used to set the value that
is to be looked for on the three least significant bits
(b3, b2, b1) of the 7-bit Device Select Code. These
inputs must be tied to VCC or VSS to establish the
Device Select Code.
Write Control (WC)

This input signal is provided for protecting the con-
tents of the whole memory from inadvertent write
operations. Write Control (WC) is used to enable
(when driven Low) or disable (when driven High)
write instructions to the entire memory area or to
the Protection Register.
When Write Control (WC) is tied Low or left uncon-
nected, the write protection of the first half of the
memory is determined by the status of the Protec-
tion Register.
M34C02
7/27
M34C02
DEVICE OPERATION

The device supports the I2C protocol. This is sum-
marized in Figure 5.. Any device that sends data
on to the bus is defined to be a transmitter, and
any device that reads the data to be a receiver.
The device that controls the data transfer is known
as the bus master, and the other as the slave de-
vice. A data transfer can only be initiated by the
bus master, which will also provide the serial clock
for synchronization. The memory device is always
a slave in all communication.
Start Condition

Start is identified by a falling edge of Serial Data
(SDA) while Serial Clock (SCL) is stable in the
High state. A Start condition must precede any
data transfer command. The device continuously
monitors (except during a Write cycle) Serial Data
(SDA) and Serial Clock (SCL) for a Start condition,
and will not respond unless one is given.
Stop Condition

Stop is identified by a rising edge of Serial Data
(SDA) while Serial Clock (SCL) is stable and driv-
en High. A Stop condition terminates communica-
tion between the device and the bus master. A
Read command that is followed by NoAck can be
followed by a Stop condition to force the device
into the Stand-by mode. A Stop condition at the
end of a Write command triggers the internal EE-
PROM Write cycle.
Acknowledge Bit (ACK)

The acknowledge bit is used to indicate a success-
ful byte transfer. The bus transmitter, whether it be
bus master or slave device, releases Serial Data
(SDA) after sending eight bits of data. During theth clock pulse period, the receiver pulls Serial
Data (SDA) Low to acknowledge the receipt of the
eight data bits.
Data Input

During data input, the device samples Serial Data
(SDA) on the rising edge of Serial Clock (SCL).
For correct device operation, Serial Data (SDA)
must be stable during the rising edge of Serial
Clock (SCL), and the Serial Data (SDA) signal
must change only when Serial Clock (SCL) is driv-
en Low.
Memory Addressing

To start communication between the bus master
and the slave device, the bus master must initiate
a Start condition. Following this, the bus master
sends the Device Select Code, shown in Table 3.
(on Serial Data (SDA), most significant bit first).
The Device Select Code consists of a 4-bit Device
Type Identifier, and a 3-bit Chip Enable “Address”
(E2, E1, E0). To address the memory array, the 4-
bit Device Type Identifier is 1010b; to address the
Protection Register, it is 0110b.
Up to eight memory devices can be connected on
a single I2C bus. Each one is given a unique 3-bit
code on the Chip Enable (E0, E1, E2) inputs.
When the Device Select Code is received, the de-
vice only responds if the Chip Enable Address is
the same as the value on the Chip Enable (E0, E1,
E2) inputs.
The 8th bit is the Read/Write bit (RW). This bit is
set to 1 for Read and 0 for Write operations.
If a match occurs on the Device Select code, the
corresponding device gives an acknowledgment
on Serial Data (SDA) during the 9th bit time. If the
device does not match the Device Select code, it
deselects itself from the bus, and goes into Stand-
by mode.
Table 4. Operating Modes

Note:1.X = VIH or VIL.
M34C02
Setting the Software Write-Protection

The M34C02 has a hardware write-protection fea-
ture, using the Write Control (WC) signal. This sig-
nal can be driven High or Low, and must be held
constant for the whole instruction sequence.
When Write Control (WC) is held Low, the whole
memory array (addresses 00h to FFh) is write pro-
tected. When Write Control (WC) is held High, the
write protection of the memory array is dependent
on whether software write-protection has been
set.
Software write-protection allows the bottom half of
the memory area (addresses 00h to 7Fh) to be
permanently write protected irrespective of subse-
quent states of the Write Control (WC) signal.
The write protection feature is activated by writing
once to the Protection Register. The Protection
Register is accessed with the device select code
set to 0110b (as shown in Table 3.), and the E2,
E1 and E0 bits set according to the states being
applied on the E2, E1 and E0 signals. As for any
other write command, Write Control (WC) needs to
be held Low. Address and data bytes must be sent
with this command, but their values are all ignored,
and are treated as Don’t Care. Once the Protec-
tion Register has been written, the write protection
of the first 128 Bytes of the memory is enabled,
and it is not possible to unprotect these 128 Bytes,
even if the device is powered off and on, and re-
gardless the state of Write Control (WC).
When the Protection Register has been written,
the M34C02 no longer responds to the device type
identifier 0110b in either read or write mode.
9/27
M34C02
Write Operations

Following a Start condition the bus master sends
a Device Select Code with the RW bit reset to 0.
The device acknowledges this, as shown in Figure
8., and waits for an address byte. The device re-
sponds to the address byte with an acknowledge
bit, and then waits for the data byte.
When the bus master generates a Stop condition
immediately after the Ack bit (in the “10th bit” time
slot), either at the end of a Byte Write or a Page
Write, the internal memory Write cycle is triggered.
A Stop condition at any other time slot does not
trigger the internal Write cycle.
During the internal Write cycle, Serial Data (SDA)
and Serial Clock (SCL) are ignored, and the de-
vice does not respond to any requests.
Byte Write

After the Device Select Code and the address
byte, the bus master sends one data byte. If the
addressed location is hardware write-protected,
the device replies to the data byte with NoAck, and
the location is not modified. If, instead, the ad-
dressed location is not Write-protected, the device
replies with Ack. The bus master terminates the
transfer by generating a Stop condition, as shown
in Figure 8..
Page Write

The Page Write mode allows up to 16 bytes to be
written in a single Write cycle, provided that they
are all located in the same page in the memory:
that is, the most significant memory address bits
are the same. If more bytes are sent than will fit up
to the end of the page, a condition known as ‘roll-
over’ occurs. This should be avoided, as data
starts to become overwritten in an implementation
dependent way.
The bus master sends from 1 to 16 bytes of data,
each of which is acknowledged by the device if
Write Control (WC) is Low. If the addressed loca-
tion is hardware write-protected, the device replies
to the data byte with NoAck, and the locations are
not modified. After each byte is transferred, the in-
ternal byte address counter (the 4 least significant
address bits only) is incremented. The transfer is
terminated by the bus master generating a Stop
condition.
M34C02
Minimizing System Delays by Polling On ACK

During the internal Write cycle, the device discon-
nects itself from the bus, and writes a copy of the
data from its internal latches to the memory cells.
The maximum Write time (tw) is shown in Table
17. and Table 18., but the typical time is shorter.
To make use of this, a polling sequence can be
used by the bus master.
The sequence, as shown in Figure 9., is:Initial condition: a Write cycle is in progress.Step 1: the bus master issues a Start condition
followed by a Device Select Code (the first
byte of the new instruction).Step 2: if the device is busy with the internal
Write cycle, no Ack will be returned and the
bus master goes back to Step 1. If the device
has terminated the internal Write cycle, it
responds with an Ack, indicating that the
device is ready to receive the second part of
the instruction (the first byte of this instruction
having been sent during Step 1).
11/27
M34C02
Read Operations

Read operations are performed independently of
whether hardware or software protection has been
set.
The device has an internal address counter which
is incremented each time a byte is read.
Random Address Read

A dummy Write is first performed to load the ad-
dress into this address counter (as shown in Fig-
ure 10.) but without sending a Stop condition.
Then, the bus master sends another Start condi-
tion, and repeats the Device Select Code, with the
RW bit set to 1. The device acknowledges this,
and outputs the contents of the addressed byte.
The bus master must not acknowledge the byte,
and terminates the transfer with a Stop condition.
Current Address Read

For the Current Address Read operation, following
a Start condition, the bus master only sends a De-
vice Select Code with the RW bit set to 1. The de-
vice acknowledges this, and outputs the byte
addressed by the internal address counter. The
counter is then incremented. The bus master ter-
minates the transfer with a Stop condition, as
shown in Figure 10., without acknowledging the
byte.
M34C02
Sequential Read

This operation can be used after a Current Ad-
dress Read or a Random Address Read. The bus
master does acknowledge the data byte output,
and sends additional clock pulses so that the de-
vice continues to output the next byte in sequence.
To terminate the stream of bytes, the bus master
must not acknowledge the last byte, and must
generate a Stop condition, as shown in Figure 10..
The output data comes from consecutive address-
es, with the internal address counter automatically
incremented after each byte output. After the last
memory address, the address counter ‘rolls-over’,
and the device continues to output data from
memory address 00h.
Acknowledge in Read Mode

For all Read commands, the device waits, after
each byte read, for an acknowledgment during theth bit time. If the bus master does not drive Serial
Data (SDA) Low during this time, the device termi-
nates the data transfer and switches to its Stand-
by mode.
USE WITHIN A DRAM DIMM

In the application, the M34C02 is soldered directly
in the printed circuit module. The 3 Chip Enable in-
puts (pins 1, 2 and 3) are wired at VCC or VSS
through the DIMM socket (see Table 5.). The pull-
up resistors needed for normal behavior of the I2C
bus are connected on the I2C bus of the mother-
board (as shown in Figure 11.).
The Write Control (WC) of the M34C02 can be left
unconnected. However, connecting it to VSS is
recommended, to maintain full read and write ac-
cess.
Programming the M34C02

When the M34C02 is delivered, full read and write
access is given to the whole memory array. It is
recommended that the first step is to use the test
equipment to write the module information (such
as its access speed, its size, its organization) to
the first half of the memory, starting from the first
memory location. When the data has been validat-
ed, the test equipment can send a Write command
to the Protection Register, using the device select
code ’01100000b’ followed by an address and
data byte (made up of Don’t Care values) as
shown in Figure 6.. The first 128 bytes of the mem-
ory area are then write-protected, and the M34C02
will no longer respond to the specific device select
code ’0110000xb’. It is not possible to reverse this
sequence.
Table 5. DRAM DIMM Connections
INITIAL DELIVERY STATE

The device is delivered with the memory array
erased: all bits are set to 1 (each byte contains
FFh).
13/27
M34C02
M34C02
MAXIMUM RATING

Stressing the device above the rating listed in the
Absolute Maximum Ratings" table may cause per-
manent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating con-
ditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality docu-
ments.
Table 6. Absolute Maximum Ratings

Note:1.Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification, and
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.JEDEC Std JESD22-A114A (C1=100pF, R1=1500 Ω, R2=500 Ω)
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED