IC Phoenix
 
Home ›  LL20 > LIS344ALHTR,MEMS inertial sensor high performance 3-axis ?/ ?g ultracompact linear accelerometer
LIS344ALHTR Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
LIS344ALHTRSTN/a7136avaiMEMS inertial sensor high performance 3-axis ?/ ?g ultracompact linear accelerometer


LIS344ALHTR ,MEMS inertial sensor high performance 3-axis ?/ ?g ultracompact linear accelerometerBlock diagram . . . . 5Figure 2. Pin connection . . . 5Figure 3. LIS344ALH electrical ..
LIS344ALTR , MEMS inertial sensor 3-axis ultracompact linear accelerometer
LIS344ALTR , MEMS inertial sensor 3-axis ultracompact linear accelerometer
LIS352AXTR ,MEMS inertial sensor, 3-axisapplicationswith a single-channel A/D converter.■ Mobile and battery-operated terminalsST is alread ..
LIS35DETR ,MEMS motion sensor 3-axisAbsolute maximum ratings . . . . 112.5 Terminology . . . . . . . 122.5.1 Sensitivity ..
LIS3DH ,MEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometerfeatures ultra low-power operational modes that allow advanced power saving and smart ■ 16 bit data ..
LM3242TMX/NOPB ,6MHz, 750mA Miniature, Adjustable, Step-Down DC-DC Converter with Bypass 9-DSBGA -30 to 90 SNOSB48E–OCTOBER 2011–REVISED AUGUST 20155 Pin Configuration and FunctionsYFQ Package9-Pin DSBGATo ..
LM3243TMX/NOPB ,2.7MHz, 2.5A Step-Down DC-DC Converter with Analog Bypass Mode for 2G/3G/4G PAs 16-DSBGA -30 to 90Features 3 DescriptionThe LM3243 is a DC-DC converter optimized for1• Input Voltage Range: 2.7 V to ..
LM324A ,Quad Operational AmplifierLM124ALM224A - LM324ALOW POWER QUAD OPERATIONAL AMPLIFIERS ■ WIDE GAIN BANDWIDTH : 1.3MHz ■ LA ..
LM324A ,Quad Operational Amplifier
LM324A ,Quad Operational AmplifierABSOLUTE MAXIMUM RATINGS Symbol Parameter LM124A LM224A LM324A UnitVSupply voltage ±16 or 32 ..
LM324A ,Quad Operational AmplifierABSOLUTE MAXIMUM RATINGS Symbol Parameter LM124A LM224A LM324A UnitVSupply voltage ±16 or 32 ..


LIS344ALHTR
MEMS inertial sensor high performance 3-axis ?/ ?g ultracompact linear accelerometer
April 2008 Rev 3 1/19
LIS344ALH

MEMS inertial sensor
high performance 3-axis ±2/±6g ultracompact linear accelerometer
Features
2.4 V to 3.6 V single supply operation ±2 g / ±6 g user selectable full-scale Low power consumption Output voltage, offset and sensitivity are
ratiometric to the supply voltage Factory trimmed device sensitivity and offset Embedded self test RoHS/ECOPACK® compliant High shock survivability ( 10000 g )
Description

The LIS344ALH is an ultra compact consumer
low-power three-axis linear accelerometer that
includes a sensing element and an IC interface
able to take the information from the sensing
element and to provide an analog signal to the
external world.
The sensing element, capable of detecting the
acceleration, is manufactured using a dedicated
process developed by ST to produce inertial
sensors and actuators in silicon.
The IC interface is manufactured using an ST
proprietary CMOS process with high level of
integration. The dedicated circuit is trimmed to
better match the sensing element characteristics.
The LIS344ALH has a dynamically user
selectable full-scale of ±2 g / ±6 g and it is
capable of measuring accelerations over a
maximum bandwidth of 1.8 kHz for all axes. The
device bandwidth may be reduced by using
external capacitances. The self-test capability
allows the user to check the functioning of the
system.
The LIS344ALH is available in Land Grid Array
package (LGA) manufactured by ST.
It is guaranteed to operate over an extended
temperature range of -40 °C to +85 °C.
The LIS344ALH belongs to a family of products
suitable for a variety of applications: Mobile terminals Gaming and virtual reality input devices Antitheft systems and inertial navigation Appliance and robotics.
Table 1. Device summary
Content LIS344ALH
2/19
Content Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Output response vs orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Mechanical characteristics at 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Mechanical characteristics derived from measurement in the -40 °C to +85
°C temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Electrical characteristics at 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
LIS344ALH List of figures
3/19
List of figures

Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. LIS344ALH electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. Output response vs orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. X axis Zero-g level at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 6. X axis Sensitivity at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 7. Y axis Zero-g level at 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. Y axis Sensitivity at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Z axis Zero-g level at 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Z axis Sensitivity at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. X axis Zero-g level change vs. temperature at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 12. X axis Sensitivity change vs. temperature at 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13. Y axis Zero-g level change vs. temperature at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 14. Y axis Sensitivity change vs. temperature at 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Z axis Zero-g level change vs. temperature at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 16. Z axis Sensitivity change vs. temperature at 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. Current consumption in normal mode at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 18. Current consumption in power-down at 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 19. Noise density at 3.3 V (X, Y axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 20. Noise density at 3.3 V (Z axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 21. LGA 16: mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
List of tables LIS344ALH
4/19
List of tables

Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Mechanical characteristics @ Vdd =3.3 V, T = 25 °C unless otherwise noted . . . . . . . . . . . 7
Table 4. Electrical characteristics @ Vdd =3.3 V, T = 25 °C unless otherwise noted. . . . . . . . . . . . . 8
Table 5. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. Filter capacitor selection, Cload (x, y, z), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
LIS344ALH Block diagram and pin description
5/19 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
1.2 Pin description
Figure 2. Pin connection
Block diagram and pin description LIS344ALH
6/19
Table 2. Pin description
LIS344ALH Mechanical and electrical specifications
7/19 Mechanical and electrical specifications
2.1 Mechanical characteristics
Table 3. Mechanical characteristics @ Vdd =3.3 V, T = 25 °C unless otherwise noted(1)
The product is factory calibrated at 3.3 V. The operational power supply range is from 2.4 V to 3.6 V. Voff, So and Vt
parameters will vary with supply voltage. Typical specifications are not guaranteed. Guaranteed by wafer level test and measurement of initial offset and sensitivity. Zero-g level and sensitivity are essentially ratiometric to supply voltage at the calibration level ±8%. Guaranteed by design. Contribution to the measuring output of an inclination/acceleration along any perpendicular axis. “Self test output voltage change” is defined as Vout(Vst=Logic1)-Vout(Vst=Logic0). “Self test output voltage change” varies cubically with supply voltage. When full-scale is set to ±6 g, “Self test output voltage change” is one third of the specified value at ±2 g.
10. Minimum resonance frequency Fres=1.8 kHz. Sensor bandwidth=1/(2*π*110kΩ*Cload), with Cload>1 nF.
Mechanical and electrical specifications LIS344ALH
8/19
2.2 Electrical characteristics
Table 4. Electrical characteristics @ Vdd =3.3 V, T = 25 °C unless otherwise noted(1)
The product is factory calibrated at 3.3 V. Typical specifications are not guaranteed. Minimum resonance frequency Fres=1.8 kHz. Device bandwidth=1/(2*π*110 kΩ*Cload), with Cload>1 nF.
LIS344ALH Mechanical and electrical specifications
9/19
2.3 Absolute maximum ratings

Stresses above those listed as “Absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 5. Absolute maximum ratings


This is a mechanical shock sensitive device, improper handling can cause permanent
damages to the part
This is an ESD sensitive device, improper handling can cause permanent damages to
the part
Mechanical and electrical specifications LIS344ALH
10/19
2.4 Terminology
Sensitivity describes the gain of the sensor and can be determined by applying 1g

acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the Earth, note the output value, rotate the
sensor by 180 degrees (point to the sky) and note the output value again thus applying ±1g
acceleration to the sensor. Subtracting the larger output value from the smaller one, and
dividing the result by 2, will give the actual sensitivity of the sensor. This value changes very
little over temperature (see sensitivity change vs temperature) and also very little over time.
The Sensitivity tolerance describes the range of sensitivities of a large population of
sensors.
Zero-g level describes the actual output signal if there is no acceleration present. A sensor

in a steady state on a horizontal surface will measure 0 g in X axis and 0 g in Y axis whereas
the Z axis will measure 1g. The output is ideally for a 3.3 V powered sensor Vdd/2 = 1650
mV. A deviation from ideal 0-g level (1650 mV in this case) is called Zero-g offset. Offset of
precise MEMS sensors is to some extend a result of stress to the sensor and therefore the
offset can slightly change after mounting the sensor onto a printed circuit board or exposing
it to extensive mechanical stress. Offset changes little over temperature - see “Zero-g level
change vs temperature” - the Zero-g level of an individual sensor is very stable over lifetime.
The Zero-g level tolerance describes the range of Zero-g levels of a population of sensors.
Self test allows to test the mechanical and electric part of the sensor, allowing the seismic

mass to be moved by means of an electrostatic test-force. The Self Test function is off when
the ST pin is connected to GND. When the ST pin is tied at Vdd an actuation force is applied
to the sensor, simulating a definite input acceleration. In this case the sensor outputs will
exhibit a voltage change in their DC levels which is related to the selected full-scale and
depending on the supply voltage through the device sensitivity. When ST is activated, the
device output level is given by the algebraic sum of the signals produced by the acceleration
acting on the sensor and by the electrostatic test-force. If the output signals change within
the amplitude specified inside Table 3, then the sensor is working properly and the
parameters of the interface chip are within the defined specification.
Output impedance describes the resistor inside the output stage of each channel. This

resistor is part of a filter consisting of an external capacitor of at least 1 nF and the internal
resistor. Due to the high resistor level, only small inexpensive external capacitors are
needed to generate low corner frequencies. When interfacing with an ADC it is important to
use high input impedance input circuitries to avoid measurement errors. Note that the
minimum load capacitance forms a corner frequency close to the resonance frequency of
the sensor. In general the smallest possible bandwidth for a particular application should be
chosen to get the best results.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED