IC Phoenix
 
Home ›  7723 > 74LVC3G14DC,Triple inverting Schmitt trigger with 5 V tolerant input
74LVC3G14DC Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74LVC3G14DCPHIN/a2480avaiTriple inverting Schmitt trigger with 5 V tolerant input
74LVC3G14DCPHILIPSN/a160avaiTriple inverting Schmitt trigger with 5 V tolerant input


74LVC3G14DC ,Triple inverting Schmitt trigger with 5 V tolerant inputFeatures■ Wide supply voltage range from 1.65 V to 5.5 V■ 5 V tolerant input/output for interfacing ..
74LVC3G14DC ,Triple inverting Schmitt trigger with 5 V tolerant inputGeneral descriptionThe 74LVC3G14 is a high-performance, low-power, low-voltage, Si-gate CMOS device ..
74LVC3G14DP ,Triple inverting Schmitt trigger with 5 V tolerant inputGeneral descriptionThe 74LVC3G14 provides three inverting buffers with Schmitt trigger input. It is ..
74LVC3G34DP ,Triple bufferFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant input/output fo ..
74LVC3GU04DC ,Triple inverter
74LVC3GU04DC ,Triple inverter
82356120100 , 0603 ESD Suppressor
82401646 , TVS Diode Array WE-TVS
824-1 , LAN 10/100 BASE-T Single Port Transformer Modules
82541ER , 82541ER Gigabit Ethernet Controller
8255A , Programmable Peripheral Interface iAPX86 Family
8255A-5 , Programmable Peripheral Interface iAPX86 Family


74LVC3G14DC
Triple inverting Schmitt trigger with 5 V tolerant input
General descriptionThe 74LVC3G14 is a high-performance, low-power, low-voltage, Si-gate CMOS device
and superior to most advanced CMOS compatible TTL-families.
Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this
device as translator in a mixed 3.3 V and 5 V environment.
This deviceis fully specifiedfor partial power-down applications using Ioff. TheIoff circuitry
disables the output, preventing the damaging backflow current through the device whenit
is powered down.
The 74LVC3G14 provides three inverting buffers with Schmitt-trigger action. It is capable
of transforming slowly changing input signals into sharply defined, jitter-free output
signals. Features Wide supply voltage range from 1.65 V to 5.5V5 V tolerant input/output for interfacing with 5 V logic High noise immunity ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V. ±24 mA output drive (VCC= 3.0V) CMOS low power consumption Latch-up performance exceeds 250 mA Direct interface with TTL levels Multiple package options Specified from −40 °C to +85 °C and −40 °C to +125 °C. Applications Wave and pulse shaper for highly noisy environment Astable multivibrator Monostable multivibrator.
74L VC3G14
Triple inverting Schmitt trigger with 5 V tolerant input
Philips Semiconductors 74L VC3G14 Quick reference data
[1] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD × VCC2× fi × N + Σ(CL × VCC2 × fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
Σ(CL× VCC2 × fo)= sum of outputs.
[2] The condition is VI= GNDto VCC. Ordering information Marking
Table 1: Quick reference data

GND=0 V; Tamb =25 °C.
tPHL, tPLH propagation delay input
nA to output nY
VCC= 1.8V;=30 pF; RL =1kΩ 4.2 - ns
VCC= 2.5V;=30 pF; RL= 500Ω 3.0 - ns
VCC= 2.7V;=50 pF; RL= 500Ω 3.8 - ns
VCC= 3.3V;=50 pF; RL= 500Ω 3.2 - ns
VCC= 5.0V;=50 pF; RL= 500Ω 2.4 - ns input capacitance - 3.5 - pF
CPD power dissipation
capacitance per buffer
VCC= 3.3V [1][2]- 18.1 - pF
Table 2: Ordering information

74LVC3G14DP −40 °C to +125°C TSSOP8 plastic thin shrink small outline package; 8 leads;
body width 3 mm; lead length 0.5 mm
SOT505-2
74LVC3G14DC −40 °C to +125°C VSSOP8 plastic very thin shrink small outline package; 8 leads;
body width 2.3 mm
SOT765-1
74LVC3G14GT −40 °C to +125°C XSON8 plastic extremely thin small outline package; no leads; terminals; body 1 × 1.95 × 0.5 mm
SOT833-1
Table 3: Marking codes

74LVC3G14DP V14
74LVC3G14DC V14
74LVC3G14GT V14
Philips Semiconductors 74L VC3G14 Functional diagram Pinning information
8.1 Pinning
Philips Semiconductors 74L VC3G14
8.2 Pin description Functional description
9.1 Function table

[1]H= HIGH voltage level;= LOW voltage level.
10. Limiting values

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When VCC=0 V (Power-down mode), the output voltage can be 5.5 V in normal condition.
Table 4: Pin description
1 data input 2 data output 3 data input
GND 4 ground (0V) 5 data output 6 data input 7 data output
VCC 8 supply voltage
Table 5: Function table[1]

Table 6: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground=0V).
VCC supply voltage −0.5 +6.5 V
IIK input diode current VI <0V - −50 mA input voltage [1] −0.5 +6.5 V
IOK output diode current VO >VCC or VO <0V - ±50 mA output voltage enable mode [1][2] −0.5 VCC + 0.5 V
Power-down mode [1][2] −0.5 +6.5 V output sourceor sink
current =0Vto VCC - ±50 mA
ICC, IGND VCC or GND current - ±100 mA
Tstg storage temperature −65 +150 °C
Ptot power dissipation Tamb= −40 °C to +125°C - 300 mW
Philips Semiconductors 74L VC3G14
11. Recommended operating conditions
12. Static characteristics
Table 7: Recommended operating conditions

VCC supply voltage 1.65 - 5.5 V input voltage 0 - 5.5 V output voltage 0 - VCC V
Tamb ambient temperature −40 - +125 °C
Table 8: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb=
−40 °C to +85°C[1]
VOL LOW-level output
voltage =VIH or VIL= 100 μA; VCC= 1.65 V to 5.5V - - 0.1 V= 4 mA; VCC= 1.65V - - 0.45 V= 8 mA; VCC= 2.3V - - 0.3 V= 12 mA; VCC= 2.7V - - 0.4 V= 24 mA; VCC= 3.0V - - 0.55 V= 32 mA; VCC= 4.5V - - 0.55 V
VOH HIGH-level output
voltage =VIH or VIL= −100 μA; VCC= 1.65 V to 5.5V VCC− 0.1- - V= −4 mA; VCC= 1.65V 1.2 - - V= −8 mA; VCC= 2.3V 1.9 - - V= −12 mA; VCC= 2.7V 2.2 - - V= −24 mA; VCC= 3.0V 2.3 - - V= −32 mA; VCC= 4.5V 3.8 - - V
ILI input leakage current VI= 5.5 V or GND; VCC= 5.5V - ±0.1 ±5 μA
Ioff power-off leakage
current
VI or VO= 5.5 V; VCC =0V - ±0.1 ±10 μA
ICC quiescent supply current VI =VCC or GND; IO=0 A; VCC= 5.5V - 0.1 10 μA
ΔICC additional quiescent
supply per pin =VCC− 0.6 V; IO =0A;
VCC= 2.3Vto 5.5V 5 500 μA input capacitance - 3.5 - pF
Philips Semiconductors 74L VC3G14
[1] All typical values are measured at Tamb =25°C.
Tamb=
−40 °C to +125°C
VOL LOW-level output
voltage =VIH or VIL= 100 μA; VCC= 1.65 V to 5.5V - - 0.1 V= 4 mA; VCC= 1.65V - - 0.70 V= 8 mA; VCC= 2.3V - - 0.45 V= 12 mA; VCC= 2.7V - - 0.60 V= 24 mA; VCC= 3.0V - - 0.80 V= 32 mA; VCC= 4.5V - - 0.80 V
VOH HIGH-level output
voltage =VIH or VIL= −100 μA; VCC= 1.65 V to 5.5V VCC− 0.1- - V= −4 mA; VCC= 1.65V 0.95 - - V= −8 mA; VCC= 2.3V 1.7 - - V= −12 mA; VCC= 2.7V 1.9 - - V= −24 mA; VCC= 3.0V 2.0 - - V= −32 mA; VCC= 4.5V 3.4 - - V
ILI input leakage current VI= 5.5 V or GND; VCC = 5.5V - - ±20 μA
Ioff power-off leakage
current
VI or VO= 5.5 V; VCC =0V - - ±20 μA
ICC quiescent supply current VI =VCC or GND; IO=0 A; VCC= 5.5V - - 40 μA
ΔICC additional quiescent
supply per pin =VCC− 0.6 V; IO =0A;
VCC= 2.3Vto 5.5V - 5000 μA
Table 8: Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Philips Semiconductors 74L VC3G14
13. Dynamic characteristics

[1] All typical values are measured at nominal VCC and Tamb =25°C.
[2] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2 × fi × N + Σ(CL × VCC2 × fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
Σ(CL× VCC2 × fo)= sum of outputs.
[3] The condition isVI= GND to VCC.
Table 9: Dynamic characteristics

GND=0 V; see Figure 7 for test circuit.
Tamb=
−40 °C to +85°C[1]
tPHL, tPLH propagation delay input nA
to output nY
see Figure6
VCC= 1.65 V to 1.95V 1.0 4.2 11.0 ns
VCC= 2.3 V to 2.7V 0.5 3.0 6.5 ns
VCC= 2.7V 0.5 3.8 7.0 ns
VCC= 3.0 V to 3.6V 0.5 3.2 6.0 ns
VCC= 4.5 V to 5.5V 0.5 2.4 4.3 ns
CPD power dissipation
capacitance per buffer
VCC= 3.3V [2][3]- 18.1 - pF
Tamb=
−40 °C to +125°C
tPHL, tPLH propagation delay input nA
to output nY
see Figure6
VCC= 1.65 V to 1.95V 1.0 - 12.0 ns
VCC= 2.3 V to 2.7V 0.5 - 7.2 ns
VCC= 2.7V 0.5 - 7.7 ns
VCC= 3.0 V to 3.6V 0.5 - 6.7 ns
VCC= 4.5 V to 5.5V 0.5 - 4.7 ns
Philips Semiconductors 74L VC3G14
14. Waveforms
Table 10: Measurement points

1.65 V to 1.95V 0.5× VCC 0.5× VCC
2.3 V to 2.7V 0.5× VCC 0.5× VCC
2.7V 1.5V 1.5V
3.0 V to 3.6V 1.5V 1.5V
4.5 V to 5.5V 0.5× VCC 0.5× VCC
Philips Semiconductors 74L VC3G14
15. Transfer characteristics
Table 11: Test data

1.65 V to 1.95V VCC ≤ 2.0ns 30pF 1kΩ open
2.3 V to 2.7V VCC ≤ 2.0ns 30pF 500Ω open
2.7V 2.7V ≤ 2.5ns 50pF 500Ω open
3.0 V to 3.6V 2.7V ≤ 2.5ns 50pF 500Ω open
4.5 V to 5.5V VCC ≤ 2.5ns 50pF 500Ω open
Table 12: Transfer characteristics

Voltages are referenced to GND (ground=0 V); see Figure 8 and9.
Tamb=
−40 °C to +85°C[1]
VT+ positive-going threshold VCC= 1.8V 0.70 1.10 1.50 V
VCC= 2.3V 1.00 1.40 1.80 V
VCC= 3.0 V; see Figure10 1.30 1.76 2.20 V
VCC= 4.5V 1.90 2.47 3.10 V
VCC= 5.5V 2.20 2.91 3.60 V
VT− negative-going threshold VCC= 1.8V 0.25 0.61 0.90 V
VCC= 2.3V 0.40 0.80 1.15 V
VCC= 3.0 V; see Figure10 0.60 1.04 1.50 V
VCC= 4.5V 1.00 1.55 2.00 V
VCC= 5.5V 1.20 1.86 2.30 V hysteresis (VT+− VT−)VCC= 1.8V 0.15 0.49 1.00 V
VCC= 2.3V 0.25 0.60 1.10 V
VCC= 3.0V 0.40 0.73 1.20 V
VCC= 4.5V 0.60 0.92 1.50 V
VCC= 5.5V 0.70 1.02 1.70 V
Tamb=
−40 °C to +125°C
VT+ positive-going threshold VCC= 1.8V 0.70 - 1.70 V
VCC= 2.3V 1.00 - 2.00 V
VCC= 3.0V 1.30 - 2.40 V
VCC= 4.5V 1.90 - 3.30 V
VCC= 5.5V 2.20 - 3.80 V
VT− negative-going threshold VCC= 1.8V 0.25 - 1.10 V
VCC= 2.3V 0.40 - 1.35 V
VCC= 3.0V 0.60 - 1.70 V
VCC= 4.5V 1.00 - 2.20 V
VCC= 5.5V 1.20 - 2.50 V
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED