IC Phoenix
 
Home ›  7723 > 74LVC3G04DC,Triple inverter
74LVC3G04DC Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74LVC3G04DCN/a180avaiTriple inverter


74LVC3G04DC ,Triple inverterFeatures■ Wide supply voltage range from 1.65 V to 5.5 V■ 5 V tolerant outputs for interfacing with ..
74LVC3G04DP ,Triple inverterFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant outputs for int ..
74LVC3G07DC ,Triple buffer with open-drain outputFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant input/output fo ..
74LVC3G07DP ,Triple buffer with open-drain outputGeneral descriptionThe 74LVC3G07 provides three non-inverting buffers.The output of the device is a ..
74LVC3G14DC ,Triple inverting Schmitt trigger with 5 V tolerant inputFeatures■ Wide supply voltage range from 1.65 V to 5.5 V■ 5 V tolerant input/output for interfacing ..
74LVC3G14DC ,Triple inverting Schmitt trigger with 5 V tolerant inputGeneral descriptionThe 74LVC3G14 is a high-performance, low-power, low-voltage, Si-gate CMOS device ..
82356120100 , 0603 ESD Suppressor
82401646 , TVS Diode Array WE-TVS
824-1 , LAN 10/100 BASE-T Single Port Transformer Modules
82541ER , 82541ER Gigabit Ethernet Controller
8255A , Programmable Peripheral Interface iAPX86 Family
8255A-5 , Programmable Peripheral Interface iAPX86 Family


74LVC3G04DC
Triple inverter
General descriptionThe 74LVC3G04 is a high-performance, low-power, low-voltage, Si-gate CMOS device
and superior to most advanced CMOS compatible TTL families.
Inputs canbe driven from either 3.3Vor5V devices. This feature allows the useof these
devices as translators in a mixed 3.3 V and5 V environment.
This deviceis fully specifiedfor partial power-down applications using Ioff. TheIoff circuitry
disables the output, preventing the damaging backflow current through the device whenit
is powered down.
The 74LVC3G04 provides three inverting buffers. Features Wide supply voltage range from 1.65 Vto 5.5V5 V tolerant outputs for interfacing with 5 V logic High noise immunity Complies with JEDEC standard: JESD8-7 (1.65 Vto 1.95V) JESD8-5 (2.3 Vto 2.7V) JESD8-B/JESD36 (2.7 Vto 3.6 V). ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V. ±24 mA output drive (VCC= 3.0V) CMOS low power consumption Latch-up performance exceeds 250 mA Direct interface with TTL levels SOT505-2 and SOT765-1 package Specified from −40 °C to +85 °C and −40 °C to +125 °C.
74L VC3G04
Triple inverter
Philips Semiconductors 74L VC3G04 Quick reference data
[1] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ Σ(CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= total load switching outputs;
Σ(CL× VCC2×fo)= sum of the outputs.
[2] The condition is VI= GNDto VCC. Ordering information
Table 1: Quick reference data

GND = 0 V; Tamb = 25 °C.
tPHL, tPLH propagation delay
inputs nA to outputnY
VCC= 1.8V;=30 pF; RL =1kΩ 3.5 - ns
VCC= 2.5V;=30 pF; RL= 500Ω 2.2 - ns
VCC= 2.7V;=50 pF; RL= 500Ω 2.7 - ns
VCC= 3.3V;=50 pF; RL= 500Ω 2.7 - ns
VCC= 5.0V;=50 pF; RL= 500Ω 1.9 - ns input capacitance - 2.5 - pF
CPD power dissipation
capacitance
VCC= 3.3V [1][2]- 13.5- pF
Table 2: Ordering information

74LVC3G04DP −40°Cto +125°C TSSOP8 plastic thin shrink small outline package; 8 leads; body
width 3 mm; lead length 0.5 mm
SOT505-2
74LVC3G04DC −40°Cto +125 °C VSSOP8 plastic very thin shrink small outline package;8 leads; body
width 2.3 mm
SOT765-1
Philips Semiconductors 74L VC3G04 Functional diagram Pinning information
6.1 Pinning
6.2 Pin description
Table 3: Pin description
1A data input 3Y data output 2A data input GND ground (0 V) 2Y data output 3A data input 1Y data output
8VCC supply voltage
Philips Semiconductors 74L VC3G04 Functional description
7.1 Function table

[1]H= HIGH voltage level;= LOW voltage level. Limiting values
[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When VCC=0 V (Power-down mode), the output voltage can be 5.5 V in normal operation. Recommended operating conditions
Table 4: Function table[1]

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground = 0 V).
VCC supply voltage −0.5 +6.5 V
IIK input diode current VI <0V - −50 mA input voltage [1] −0.5 +6.5 V
IOK output diode current VO >VCC or VO <0V - ±50 mA output voltage active mode [1][2] −0.5 VCC+ 0.5V
Power-down mode [1][2] −0.5 +6.5 V output current VO=0 V to VCC - ±50 mA
ICC,IGND VCC or GND current - ±100 mA
Tstg storage temperature −65 +150 °C
Ptot power dissipation Tamb = −40°Cto +125°C - 300 mW
Table 6: Recommended operating conditions

VCC supply voltage 1.65 - 5.5 V input voltage 0 - 5.5 V output voltage active mode 0 - VCC V
Power-down mode;
VCC =0V - 5.5 V
Tamb operating ambient
temperature
−40 - +125 °C
tr, tf input rise and fall
times
VCC= 1.65 Vto 2.7V 0 - 20 ns/V
VCC= 2.7 Vto 5.5V 0 - 10 ns/V
Philips Semiconductors 74L VC3G04
10. Static characteristics
Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Tamb=
−40°Cto +85°C[1]
VIH HIGH-level input
voltage
VCC = 1.65 V to 1.95 V 0.65× VCC -- V
VCC = 2.3 V to 2.7 V 1.7 - - V
VCC = 2.7 V to 3.6 V 2.0 - - V
VCC = 4.5 V to 5.5 V 0.7× VCC -- V
VIL LOW-level input
voltage
VCC = 1.65 V to 1.95 V - - 0.35× VCC V
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 2.7 V to 3.6 V - - 0.8 V
VCC = 4.5 V to 5.5 V - - 0.3× VCC V
VOL LOW-level output
voltage =VIHorVIL= 100 μA; VCC = 1.65 V to 5.5 V - - 0.1 V=4 mA; VCC = 1.65 V - - 0.45 V=8 mA; VCC = 2.3 V - - 0.3 V=12 mA; VCC = 2.7 V - - 0.4 V=24 mA; VCC = 3.0 V - - 0.55 V=32 mA; VCC = 4.5 V - - 0.55 V
VOH HIGH-level output
voltage =VIHorVIL= −100 μA; VCC = 1.65 V to 5.5 V VCC− 0.1 - - V=−4 mA; VCC = 1.65 V 1.2 - - V=−8 mA; VCC = 2.3 V 1.9 - - V= −12 mA; VCC = 2.7 V 2.2 - - V= −24 mA; VCC = 3.0 V 2.3 - - V= −32 mA; VCC = 4.5 V 3.8 - - V
ILI input leakage current VI= 5.5Vor GND; VCC = 5.5 V - ±0.1 ±5 μA
Ioff power-off leakage
currentorVO= 5.5 V; VCC = 0 V - ±0.1 ±10 μA
ICC quiescent supply
current =VCCor GND; IO= 0 A;
VCC= 5.5V 0.1 10 μA
ΔICC additional quiescent
supply current per pin =VCC− 0.6 V; IO= 0 A;
VCC= 2.3V to 5.5 V 5 500 μA input capacitance - 2.5 - pF
Tamb=
−40°Cto +125°C
VIH HIGH-level input
voltage
VCC = 1.65 V to 1.95 V 0.65× VCC -- V
VCC = 2.3 V to 2.7 V 1.7 - - V
VCC = 2.7 V to 3.6 V 2.0 - - V
VCC = 4.5 V to 5.5 V 0.7× VCC -- V
Philips Semiconductors 74L VC3G04
[1] All typical values are measured at VCC=3.3 V and Tamb =25°C.
11. Dynamic characteristics

VIL LOW-level input
voltage
VCC = 1.65 V to 1.95 V - - 0.35× VCC V
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 2.7 V to 3.6 V - - 0.8 V
VCC = 4.5 V to 5.5 V - - 0.3× VCC V
VOL LOW-level output
voltage =VIHorVIL= 100 μA; VCC = 1.65 V to 5.5 V - - 0.1 V=4 mA; VCC = 1.65 V - - 0.70 V=8 mA; VCC = 2.3 V - - 0.45 V=12 mA; VCC = 2.7 V - - 0.60 V=24 mA; VCC = 3.0 V - - 0.80 V=32 mA; VCC = 4.5 V - - 0.80 V
VOH HIGH-level output
voltage =VIHorVIL= −100 μA; VCC = 1.65 V to 5.5 V VCC− 0.1 - - V=−4 mA; VCC = 1.65 V 0.95 - - V=−8 mA; VCC = 2.3 V 1.7 - - V= −12 mA; VCC = 2.7 V 1.9 - - V= −24 mA; VCC = 3.0 V 2.0 - - V= −32 mA; VCC = 4.5 V 3.4 - - V
ILI input leakage current VI= 5.5Vor GND; VCC = 5.5 V - - ±20 μA
Ioff power-off leakage
currentorVO= 5.5 V; VCC = 0 V - - ±20 μA
ICC quiescent supply
current =VCCor GND; IO= 0 A;
VCC= 5.5V 40 μA
ΔICC additional quiescent
supply current per pin =VCC− 0.6 V; IO= 0 A;
VCC= 2.3V to 5.5 V - 5000 μA
Table 7: Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Table 8: Dynamic characteristics

GND = 0 V; for test circuit see Figure6.
Tamb=
−40°Cto +85°C[1]
tPHL, tPLH propagation delay inputto output nY
see Figure5
VCC = 1.65 V to 1.95 V 1.0 3.5 8.0 ns
VCC = 2.3 V to 2.7 V 0.5 2.2 4.4 ns
VCC = 2.7 V 0.5 2.7 5.2 ns
VCC = 3.0 V to 3.6 V 0.5 2.7 4.1 ns
VCC = 4.5 V to 5.5 V 0.5 1.9 3.2 ns
CPD power dissipation capacitance VCC= 3.3V [2][3]- 13.5 - pF
Philips Semiconductors 74L VC3G04
[1] All typical values are measured at nominal VCC and Tamb =25°C.
[2] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ Σ(CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= total load switching outputs;
Σ(CL× VCC2×fo)= sum of the outputs.
[3] The condition is VI= GNDto VCC.
12. Waveforms
Tamb=
−40°Cto +125°C
tPHL, tPLH propagation delay inputto output nY
see Figure5
VCC = 1.65 V to 1.95 V 1.0 - 9.5 ns
VCC = 2.3 V to 2.7 V 0.5 - 5.4 ns
VCC = 2.7 V 0.5 - 7.0 ns
VCC = 3.0 V to 3.6 V 0.5 - 5.5 ns
VCC = 4.5 V to 5.5 V 0.5 - 3.8 ns
Table 8: Dynamic characteristics …continued

GND = 0 V; for test circuit see Figure6.
Table 9: Measurement points

1.65 V to 1.95V 0.5× VCC VCC 0.5× VCC
2.3 V to 2.7V 0.5× VCC VCC 0.5× VCC
2.7V 1.5V 2.7V 1.5V
3.0 V to 3.6V 1.5V 2.7 V 1.5V
4.5 V to 5.5V 0.5× VCC VCC 0.5× VCC
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED