IC Phoenix
 
Home ›  7722 > 74LVC1G38GV,2-input NAND gate; open drain
74LVC1G38GV Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74LVC1G38GVPHILIPSN/a3000avai2-input NAND gate; open drain


74LVC1G38GV ,2-input NAND gate; open drainFeatures■ Wide supply voltage range from 1.65 V to 5.5 V■ 5 V tolerant outputs for interfacing with ..
74LVC1G38GW ,74LVC1G38; 2-input NAND gate (open drain)Features and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant outputs for int ..
74LVC1G53DC ,2-channel analog multiplexer/demultiplexerGeneral descriptionThe 74LVC1G53 is a low-power, low-voltage, high-speed, Si-gate CMOS device.The 7 ..
74LVC1G53DP ,2-channel analog multiplexer/demultiplexerFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V Very low ON resistance: 7.5 ..
74LVC1G57DW-7 , CONFIGURABLE MULTIPLE-FUNCTION GATE
74LVC1G57FW4-7 , CONFIGURABLE MULTIPLE-FUNCTION GATE
81487EIB ,【15kV ESD Protected, 1/8 Unit Load, 5V, Low Power, High Speed or Slew Rate Limited, RS-485/RS-422 Transceivers
8155H-2 , 2048-BIT STATIC HMOS RAM WITH I/O PORTS AND TIMER
8169 ,DIGITAL AUDIO PROCESSOR WITH MULTICHANNEL DDX⑩applications with commercial audio D/A converters. The output sampling frequency is fixed at 48 kHz ..
8-188275-4 , AMP Micro-Match Miniature Connector System
81C55 ,2048-Bit CMOS STATIC RAM WITH I/O PORTS AND TIMER
81C55 ,2048-Bit CMOS STATIC RAM WITH I/O PORTS AND TIMER


74LVC1G38GV
74LVC1G38; 2-input NAND gate (open drain)
General descriptionThe 74LVC1G38 is a high-performance, low-power, low-voltage, Si-gate CMOS device
and superior to most advanced CMOS compatible TTL families.
Inputs can be driven from either 3.3 Vor5 V devices. This feature allows the use of this
device as translator in a mixed 3.3 V and5 V environment.
This deviceis fully specifiedfor partial power-down applications using Ioff. TheIoff circuitry
disables the output, preventing the damaging backflow current through the device whenit
is powered down.
The 74LVC1G38 provides the 2-input NAND function. Features Wide supply voltage range from 1.65Vto 5.5V5 V tolerant outputs for interfacing with 5 V logic High noise immunity Complies with JEDEC standard: JESD8-7 (1.65 Vto 1.95V) JESD8-5 (2.3 Vto 2.7V) JESD8-B/JESD36 (2.7 Vto 3.6 V). ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V. ±24 mA output drive (VCC= 3.0V) CMOS low power consumption Open drain outputs Latch-up performance exceeds 250 mA Direct interface with TTL levels Inputs accept voltages up to 5V Multiple package options Specified from −40°Cto +125 °C.
74L VC1G38
2-input NAND gate (open drain)
Philips Semiconductors 74L VC1G38 Quick reference data
[1] CPD is used to determine the dynamic power dissipation (PDin μW). =CPD× VCC2×fi+∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance inpF;
VCC= supply voltage in Volts;(CL× VCC2×fo)= sum of outputs.
[2] The condition is VI= GNDto VCC. Ordering information Marking
Table 1: Quick reference data

tPHL, tPLH propagation delay
inputsA,B outputY
VCC= 1.8V;CL =30pF; =1kΩ 3.0 - ns
VCC= 2.5V;CL =30pF;= 500Ω 1.8 - ns
VCC= 2.7V;CL =50pF;= 500Ω 2.5 - ns
VCC= 3.3V;CL =50pF;= 500Ω 2.3 - ns
VCC= 5.0V;CL =50pF;= 500Ω 1.5 - ns input capacitance - 2.5 - pF
CPD power dissipation
capacitance per gate
VCC= 3.3V [1][2] -6 -pF
Table 2: Ordering information

74LVC1G38GW −40 °C to +125°C SC-88A plastic surface mounted package; 5 leads SOT353
74LVC1G38GV −40 °C to +125°C SC-74A plastic surface mounted package; 5 leads SOT753
74LVC1G38GM −40 °C to +125°C XSON6 plastic extremely thin small outline package;no leads;
6 terminals; body 1× 1.45× 0.5 mm
SOT886
Table 3: Marking

74LVC1G38GW YB
74LVC1G38GV YB
74LVC1G38GM YB
Philips Semiconductors 74L VC1G38 Functional diagram Pinning information
7.1 Pinning
7.2 Pin description
Table 4: Pin description
1 1 data input A 2 2 data input B
GND 3 3 ground (0V) 4 4 data output Y
n.c. - 5 not connected
VCC 5 6 supply voltage
Philips Semiconductors 74L VC1G38 Functional description
8.1 Function table

[1]H= HIGH voltage level;= LOW voltage level;= high-impedance OFF state. Limiting values
[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When VCC=0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.
10. Recommended operating conditions
Table 5: Function table[1]

LLZ Z Z
HHL
Table 6: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground = 0V).
VCC supply voltage −0.5 +6.5 V
IIK input diode current VI <0V - −50 mA input voltage [1] −0.5 +6.5 V
IOK output diode current VO >VCC or VO <0V - ±50 mA output voltage active mode [1][2] −0.5 +6.5 V
Power-down mode [1][2] −0.5 +6.5 V output diode current VO =0Vto VCC - ±50 mA
ICC, IGND VCC or GND current - ±100 mA
Tstg storage temperature −65 +150 °C
Ptot power dissipation Tamb= −40 °C to +125°C - 300 mW
Table 7: Recommended operating conditions

VCC supply voltage 1.65 - 5.5 V input voltage 0 - 5.5 V
Philips Semiconductors 74L VC1G38
11. Static characteristics
output voltage
active mode 0 - 5.5 V
disable mode;
VCC= 1.65 Vto 5.5V - 5.5 V
Power-down mode;
VCC =0 V - 5.5 V
Tamb ambient temperature −40 - +125 °C
tr, tf input rise and fall
times
VCC= 1.65 V to 2.7V 0 - 20 ns/V
VCC= 2.7 V to 5.5V 0 - 10 ns/V
Table 7: Recommended operating conditions …continued
Table 8: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb=
−40 °C to +85°C[1]
VIH HIGH-level input
voltage
VCC = 1.65 Vto 1.95 V 0.65× VCC -- V
VCC = 2.3 Vto 2.7 V 1.7 - - V
VCC = 2.7 Vto 3.6 V 2.0 - - V
VCC = 4.5 Vto 5.5 V 0.7 × VCC -- V
VIL LOW-level input voltage VCC = 1.65 Vto 1.95 V - - 0.35× VCCV
VCC = 2.3 Vto 2.7 V - - 0.7 V
VCC = 2.7 Vto 3.6 V - - 0.8 V
VCC = 4.5 Vto 5.5 V - - 0.3 × VCC V
VOL LOW-level output
voltage =VIHorVIL -- -= 100 μA; VCC= 1.65Vto 5.5 V - - 0.1 V=4 mA; VCC = 1.65V - - 0.45 V=8 mA; VCC = 2.3V - - 0.3 V=12 mA; VCC = 2.7V - - 0.4 V=24 mA; VCC = 3.0V - - 0.55 V=32 mA; VCC = 4.5V - - 0.55 V
ILI input leakage current VI= 5.5V or GND; VCC = 5.5 V - ±0.1 ±5 μA
IOZ 3-state output
OFF-state current =VIHor VIL; VO =VCCor GND;
VCC = 5.5 V ±0.1 ±10 μA
Ioff power-off leakage
currentorVO= 5.5 V; VCC = 0V - ±0.1 ±10 μA
ICC quiescent supply
current =VCC or GND; IO =0A;
VCC= 5.5V 0.1 10 μA
ΔICC additional quiescent
supply current per pin =VCC− 0.6 V; IO =0A;
VCC= 2.3Vto 5.5 V 5 500 μA input capacitance - 2.5 - pF
Philips Semiconductors 74L VC1G38
[1] All typical values are measured at VCC = 3.3 V and Tamb = 25°C.
12. Dynamic characteristics
Tamb=
−40 °C to +125°C
VIH HIGH-level input
voltage
VCC = 1.65 Vto 1.95 V 0.65× VCC -- V
VCC = 2.3 Vto 2.7 V 1.7 - - V
VCC = 2.7 Vto 3.6 V 2.0 - - V
VCC = 4.5 Vto 5.5 V 0.7 × VCC -- V
VIL LOW-level input voltage VCC = 1.65 Vto 1.95 V - - 0.35× VCCV
VCC = 2.3 Vto 2.7 V - - 0.7 V
VCC = 2.7 Vto 3.6 V - - 0.8 V
VCC = 4.5 Vto 5.5 V - - 0.3 × VCC V
VOL LOW-level output
voltage =VIHorVIL -- -= 100 μA; VCC= 1.65Vto 5.5 V - - 0.1 V=4 mA; VCC = 1.65V - - 0.70 V=8 mA; VCC = 2.3V - - 0.45 V=12 mA; VCC = 2.7V - - 0.60 V=24 mA; VCC = 3.0V - - 0.80 V=32 mA; VCC = 4.5V - - 0.80 V
ILI input leakage current VI= 5.5V or GND; VCC = 5.5 V - - ±100 μA
IOZ 3-state output
OFF-state current =VIHor VIL; VO =VCCor GND;
VCC = 5.5 V ±200 μA
Ioff power-off leakage
currentorVO= 5.5 V; VCC = 0V - - ±200 μA
ICC quiescent supply
current =VCC or GND; IO =0A;
VCC= 5.5V - 200 μA
ΔICC additional quiescent
supply current per pin =VCC− 0.6 V; IO =0A;
VCC= 2.3Vto 5.5 V - 5000 μA
Table 8: Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Table 9: Dynamic characteristics

GND = 0 V.
Tamb =
−40 °C to +85°C[1]
tPZL, tPLZ propagation delay
inputsA, B to outputY
see Figure 6 and7
VCC = 1.65 V to 1.95 V 1.0 3.0 10.0 ns
VCC = 2.3 V to 2.7 V 0.5 1.8 6.0 ns
VCC = 2.7 V 0.5 2.5 5.0 ns
VCC = 3.0 V to 3.6 V 0.5 2.3 4.5 ns
VCC = 4.5 V to 5.5 V 0.5 1.5 3.9 ns
CPD power dissipation
capacitance per gate
VCC= 3.3V [2][3] -6 -pF
Philips Semiconductors 74L VC1G38
[1] All typical values are measured at nominal VCC and Tamb = 25°C.
[2] CPD is used to determine the dynamic power dissipation (PDin μW). =CPD× VCC2×fi+∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance inpF;
VCC= supply voltage in Volts;(CL× VCC2×fo)= sum of outputs.
[3] The condition is VI= GNDto VCC.
13. AC waveforms
Tamb =
−40 °C to +125°C
tPZL, tPLZ propagation delay
inputsA, B to outputY
see Figure 6 and7
VCC = 1.65 V to 1.95 V 1.0 - 12.5 ns
VCC = 2.3 V to 2.7 V 0.5 - 7.5 ns
VCC = 2.7 V 0.5 - 6.5 ns
VCC = 3.0 V to 3.6 V 0.5 - 5.7 ns
VCC = 4.5 V to 5.5 V 0.5 - 4.9 ns
Table 9: Dynamic characteristics …continued

GND = 0 V.
Table 10: Measurement points

1.65 Vto 1.95V 0.5× VCC 0.5× VCC VOL+ 0.15V
2.3 Vto 2.7V 0.5× VCC 0.5× VCC VOL+ 0.15V
2.7V 1.5V 1.5V VOL+ 0.3V
3.0 Vto 3.6V 1.5V 1.5V VOL+ 0.3V
4.5 Vto 5.5V 0.5× VCC 0.5× VCC VOL+ 0.3V
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED