IC Phoenix
 
Home ›  VV4 > VNH2SP30TR-E,AUTOMOTIVE FULLY INTEGRATED H-BRIDGE MOTOR DRIVER
VNH2SP30TR-E Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
VNH2SP30TR-E |VNH2SP30TRESTN/a14221avaiAUTOMOTIVE FULLY INTEGRATED H-BRIDGE MOTOR DRIVER


VNH2SP30TR-E ,AUTOMOTIVE FULLY INTEGRATED H-BRIDGE MOTOR DRIVERBlock diagram . . . . 5Figure 2. Configuration diagram (top view) . . . . . 6Figure 3. ..
VNH3ASP30-E ,automotive fully integrated h-bridge motor driverBlock DiagramVCCOVERTEMPERATURE A O + UV V OVERTEMPERATURE BCLAMP HS CLAMP HSA BHS HSA DRIVER DRIVE ..
VNH3ASP30TR-E ,automotive fully integrated h-bridge motor driverAbsolute Maximum RatingSymbol Parameter Value UnitV Supply Voltage + 41 VCCI Maximum Output Current ..
VNH3ASP30TR-E ,automotive fully integrated h-bridge motor driverFeatures Figure 1. PackageTYPE R I VDS(on) OUT ccmax42 mΩ maxVNH3ASP30-E 30 A 41 V(per leg)■ OUTPUT ..
VNH3SP30 ,FULLY INTEGRATED H-BRIDGE MOTOR DRIVERABSOLUTE MAXIMUM RATINGSymbol Parameter Value UnitV Supply voltage -0.3.. 40 VCCI Maximum output cu ..
VNH3SP30 ,FULLY INTEGRATED H-BRIDGE MOTOR DRIVERBLOCK DIAGRAMVCCOVERTEMPERATURE A O + UV V OVERTEMPERATURE BCLAMP A CLAMP BHS DRIVER DRIVER HSA BLO ..
WFF10N65 , Silicon N-Channel MOSFET
WFF12N65 , Silicon N-Channel MOSFET
WFF2N60 , Silicon N-Channel MOSFET
WFF2N60 , Silicon N-Channel MOSFET
WFF2N60 , Silicon N-Channel MOSFET
WFF630 , Silicon N-Channel MOSFET


VNH2SP30TR-E
AUTOMOTIVE FULLY INTEGRATED H-BRIDGE MOTOR DRIVER
September 2013 Rev 9 1/33VNH2SP30-E
Automotive fully integrated H-bridge motor driver
Features

•5V logic level compatible inputs
•Undervoltage and overvoltage shut-down
•Overvoltage clamp
•Thermal shut down
•Cross-conduction protection
•Linear current limiter
•Very low stand-by power consumption
•PWM operation up to 20 kHz
•Protection against loss of ground and loss of VCC
•Current sense output proportional to motor
current
•Package: ECOPACK®
Description

The VNH2SP30-E is a full bridge motor driver
intended for a wide range of automotive
applications. The device incorporates a dual
monolithic high side driver and two low side
switches. The high side driver switch is designed
using STMicroelectronic’s well known and proven
proprietary VIPower™ M0 technology which
permits efficient integration on the same die of a
true Power MOSFET with an intelligent
signal/protection circuitry.
The low side switches are vertical MOSFETs
manufactured using STMicroelectronic’s
proprietary EHD (‘STripFET™’) process. The
three die are assembled in the MultiPowerSO-30
package on electrically isolated leadframes. This
package, specifically designed for the harsh
automotive environment offers improved thermal
performance thanks to exposed die pads.
Moreover, its fully symmetrical mechanical design
allows superior manufacturability at board level.
The input signals INA and INB can directly
interface to the microcontroller to select the motor
direction and the brake condition. The
DIAGA/ENA or DIAGB/ENB, when connected to an
external pull-up resistor, enable one leg of the
bridge. They also provide a feedback digital
diagnostic signal. The normal condition operation
is explained in Table 12: Truth table in normal
operating conditions on page 14. The motor
current can be monitored with the CS pin by
delivering a current proportional to its value. The
speed of the motor can be controlled in all
possible conditions by the PWM up to 20 kHz. In
all cases, a low level state on the PWM pin will
turn off both the LSA and LSB switches. When
PWM rises to a high level, LSA or LSB turn on
again depending on the input pin state.

Table 1. Device summary
Contents VNH2SP30-E
2/33
Contents Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 PowerSSO-30 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady-
state mode 26
4.1.2 Thermal resistances definition (values according to the PCB heatsink
area) 26
4.1.3 Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Single pulse thermal impedance definition
(values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . 26 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 MultiPowerSO-30 package mechanical data . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VNH2SP30-E List of tables
3/33
List of tables

Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Pin definitions and functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Pin functions description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 7. Logic inputs (INA, INB, ENA, ENB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. PWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 9. Switching (VCC =13V, RLOAD= 0.87W , unless otherwise specified) . . . . . . . . . . . . . . . . 10
Table 10. Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 11. Current sense (9V< VCC< 16V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 12. Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 13. Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 14. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 15. Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 26
Table 16. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 17. MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 18. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
List of figures VNH2SP30-E
4/33
List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Definition of the low side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Definition of the high side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Definition of dynamic cross conduction current during a PWM operation. . . . . . . . . . . . . . 13
Figure 8. On state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Off state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. High level input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. Input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 13. Input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 14. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15. High level enable pin current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 16. Delay time during change of operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 17. Enable clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 18. High level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 19. Low level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 20. PWM high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. PWM low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 22. PWM high level current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 23. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 24. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 25. Current limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 26. On state high side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 27. On state low side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 28. Turn-On delay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 29. Turn-Off delay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 30. Output voltage rise time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 31. Output voltage fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 32. Typical application circuit for DC to 20 kHz PWM operation short circuit protection . . . . . 20
Figure 33. Behavior in fault condition (How a fault can be cleared). . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 34. Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 36. Waveforms in full bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 37. Waveforms in full bridge operation (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 38. MultiPowerSO-30™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 39. Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 40. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 25
Figure 41. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . 27
Figure 42. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse. . . . . . . . . . . . . 27
Figure 43. Thermal fitting model of an H-bridge in MultiPowerSO-30 . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 44. MultiPowerSO-30 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 45. MultiPowerSO-30 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 46. MultiPowerSO-30 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 47. MultiPowerSO-30 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VNH2SP30-E Block diagram and pin description
5/33 Block diagram and pin description
Figure 1. Block diagram

Table 2. Block description
Block diagram and pin description VNH2SP30-E
6/33
Figure 2. Configuration diagram (top view)

Table 3. Pin definitions and functions GNDA and GNDB must be externally connected together.
VNH2SP30-E Block diagram and pin description
7/33
Table 4. Pin functions description
Electrical specifications VNH2SP30-E
8/33
2 Electrical specifications
Figure 3. Current and voltage conventions
2.1 Absolute maximum ratings


Table 5. Absolute maximum ratings
VNH2SP30-E Electrical specifications
9/33
2.2 Electrical characteristics

VCC = 9V up to 16 V; -40°C < TJ < 150°C, unless otherwise specified.




Table 6. Power section
Table 7. Logic inputs (INA, INB, ENA, ENB)
Electrical specifications VNH2SP30-E
10/33



Table 8. PWM
Table 9. Switching (VCC =13V, RLOAD =0.87 , unless otherwise specified)
To avoid false Short to Battery detection during PWM operation, the PWM signal must be low for a time longer than 6µs.
Table 10. Protection and diagnostic
VNH2SP30-E Electrical specifications
11/33

Figure 4. Definition of the delay times measurement
Table 11. Current sense (9V< VCC <16V)
Analog sense current drift is deviation of factor K for a given device over (-40°C to 150°C and 9V< VCC< 16V) with respect to its value measured at Tj= 25°C, VCC =13V.
Electrical specifications VNH2SP30-E
12/33
Figure 5. Definition of the low side switching times
Figure 6. Definition of the high side switching times
VNH2SP30-E Electrical specifications
13/33
Figure 7. Definition of dynamic cross conduction current during a PWM operation
Electrical specifications VNH2SP30-E
14/33



Note: Notice that saturation detection on the low side power MOSFET is possible only if the
impedance of the short-circuit from the output to the battery is less than 100m when the
device is supplied with a battery voltage of 13.5V.
Table 12. Truth table in normal operating conditions
Table 13. Truth table in fault conditions (detected on OUTA)
VNH2SP30-E Electrical specifications
15/33



Table 14. Electrical transient requirements

For load dump exceeding the above value a centralized suppressor must be adopted.

Electrical specifications VNH2SP30-E
2.3 Electrical characteristics curves



Figure 8. On state supply current Figure 9. Off state supply current
Figure 10. High level input current Figure 11. Input clamp voltage
Figure 12. Input high level voltage Figure 13. Input low level voltage
VNH2SP30-E Electrical specifications
17/33



Figure 14. Input hysteresis voltage Figure 15. High level enable pin current
Figure 16. Delay time during change of
operation mode
Figure 17. Enable clamp voltage
Figure 18. High level enable voltage Figure 19. Low level enable voltage
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED