VIPER100BSP ,SMPS PRIMARY I.C.ABSOLUTE MAXIMUM RATINGSymbol Parameter Value UnitoV Continuous Drain-Source Voltage (Tj = 25 to 12 ..
VIPER100SP ,SMPS PRIMARY I.C.VIPer100/SP®- VIPer100A/ASPSMPS PRIMARY I.C.TYPE V I RDSS n DS(on)VIPer100/SP 620V 3 A 2.5 ΩVIPer10 ..
VIPER12A ,LOW POWER OFF LINE SMPS PRIMARY SWITCHERELECTRICAL CHARACTERISTICS (T =25°C, V =18V, unless otherwise specified)j DDPOWER SECTIONSymbol Par ..
VIPER12A. ,LOW POWER OFF LINE SMPS PRIMARY SWITCHERVIPer12ADIP®VIPer12ASLOW POWER OFF LINE SMPS PRIMARY SWITCHERTYPICAL POWER CAPABILITYMains type SO- ..
VIPER12A.. ,LOW POWER OFF LINE SMPS PRIMARY SWITCHERapplications cover off line power supplies forbattery charger adapters, standby power suppliesn HIG ..
VIPER12ADIP ,LOW POWER OFF LINE SMPS PRIMARY SWITCHERABSOLUTE MAXIMUM RATINGSSymbol Parameter Value UnitV Switching Drain Source Voltage (T =25 ... 125° ..
W83977AG-A , WINBOND I/O
W83977AG-A , WINBOND I/O
W83977CTF-AW , WINBOND I/O
W83977EG-AW , These products are not designed for use in life support appliances
W83977G-A , WINBOND I/O
W83L351G , ExpressCard™ Power Interface Switch
VIPER100B-VIPER100BSP
SMPS PRIMARY I.C.
VIPer100B
VIPer100BSPSMPS PRIMARY I.C.
PRELIMINARY DATAJanuary 2000
BLOCK DIAGRAM
TYPE VDSS In RDS(on)VIPer100B/BSP 400V 6A 1.1Ω
FEATURE ADJUSTABLE SWITCHING FREQUENCY UP 200KHZ CURRENT MODE CONTROL SOFT START AND SHUT DOWN CONTROL AUTOMATIC BURST MODE OPERATIONIN
STAND-BY CONDITION ABLE TO MEET
”BLUE ANGEL” NORM (<1W TOTAL POWER
CONSUMPTION) INTERNALLY TRIMMED ZENER
REFERENCE UNDERVOLTAGE LOCK-OUT WITH
HYSTERESIS INTEGRATED START-UP SUPPLY AVALANCHE RUGGED OVERTEMPERATUREPROTECTION LOW STAND-BY CURRENT ADJUSTABLE CURRENT LIMITATION
DESCRIPTIONVIPer100B/100BSP, made using VIPower M0
Technology, combineson the same silicon chipa
state-of-the-art PWM circuit together with an
optimized high voltage avalanche rugged Vertical
Power MOSFET (400 V/ 6 A). Typical
applications cover off line power supplies with secondary power capabilityof 100Wina US
mains lines configuration.Itis compatible from
both primaryor secondaryregulation loop despite
using around 50% less components when
compared witha discrete solution. Burst mode
operationis an additional featureof this device,
offering the possibility to operate in stand-by
mode without extra components.
PowerSO-10
PENTAWATT HV PENTAWATT HV
(022Y)VDD
OSC
COMP
DRAIN
SOURCEV
UVLO
LOGIC
SECURITY
LATCH
PWM
LATCHR/SR3
OSCILLATOR
OVERTEMP.
DETECTOR
ERROR
AMPLIFIER_
0.5V+
1.7 μs
DELAY 250ns
BLANKING
CURRENT
AMPLIFIER
ON/OFF
0.5V
0.5V/A_++
4.5V
1/20
ABSOLUTE MAXIMUM RATING
Symbol Parameter Value UnitVDS Continuous Drain-Source Voltage(Tj=25to 125oC) -0.3to 400 V Maximum Current Internally Limited A
VDD Supply Voltage 0to15 V
VOSC Voltage Range Input 0to VDD V
VCOMP Voltage Range Input 0to5 V
ICOMP Maximum Continuous Current ±2mA
Vesd Electrostatic discharge(R= 1.5 KΩC= 100pF) 4000 V
ID(AR) Avalanche Drain-Source Current, Repetitiveor Not-Repetitive
(TC =100oC, Pulse Width LimitedbyTJ max, δ <1%)
Ptot Power DissipationatTc=25o C82 W Junction Operating Temperature Internally Limited oC
Tstg Storage Temperature -65to 150 oC
THERMAL DATA
PENTAWATT-HV PowerSO-10(*)Rthj-case Thermal Resistance Junction-case Max 1.4 1.4 o C/W
Rthj-amb. Thermal Resistance Ambient-case Max 60 50 o C/W
(*) When mounted usingthe minimum recommended pad sizeon FR-4 board.
CURRENT AND VOLTAGE CONVENTIONS13V
OSC
COMP SOURCE
DRAINVDDVCOMP
VOSC
VDD VDS
ICOMP
IOSC
IDD ID
FC00020
CONNECTION DIAGRAMS (Top View)
PENTAWATT HV PENTAWATT HV (022Y) PowerSO-10
VIPER100B/BSP2/20
PINS FUNCTIONAL DESCRIPTION
DRAIN PIN:Integrated power MOSFET drain pin.It provides
internal bias current during start-up via an
integrated high voltage current source whichis
switchedoff during normal operation. The device ableto handlean unclamped current duringits
normal operation, assuring self protection against
voltage surges, PCB stray inductance, and
allowinga snubberless operation for low output
power.
SOURCE PIN:Power MOSFET source pin. Primary side circuit
common ground connection.
VDD PIN:This pin provides two functions:It correspondsto the low voltage supplyof the
control partof the circuit.If VDD goes below 8V,
the start-up current sourceis activated and the
output power MOSFETis switchedoff until the
VDD voltage reaches 11V. During this phase,
the internal current consumptionis reduced,
the VDD pinis sourcinga currentof about 2mA
and the COMP pinis shortedto ground. After
that, the current sourceis shut down, and the
device triesto startupby switching again. Thispinis also connectedto the error amplifier, orderto allow primaryas wellas secondary
regulation configurations.In caseof primary
regulation, an internal 13V trimmed reference
voltageis usedto maintain VDDat 13V. For
secondary regulation,a voltage between 8.5V
and 12.5V will be put on VDD pin by
transformer design,in orderto stuck the output the transconductance amplifierto the high
state. The COMP pin behaves asa constant
current source, and can easilybe connectedto
the outputof an optocoupler. Note that any
overvoltage dueto regulation loop failureis still
detectedby the error amplifier through the VDD
voltage, which cannot overpass 13V. The
output voltage will be somewhat higher than
the nominalone, but still under control.
COMP PIN:This pin provides two functions:Itis the outputof the error transconductance
amplifier, and allows for the connectionofa
compensation networkto provide the desired
transfer function of the regulation loop. Its
bandwidth can be easily adjusted to the
needed value with usual componentsvalue. As
stated above, secondary regulation
configurations are also implemented through
the COMP pin. When the COMP voltageis going below 0.5V,
the shut-downof the circuit occurs, witha zero
duty cyclefor the power MOSFET. This feature
canbe usedto switchoff the converter, andis
automatically activated by the regulation loop
(whateveris the configuration)to providea
burst mode operationin case of negligible
output poweror open load condition.
OSC PIN: RT-CT network mustbe connectedon that pin define the switching frequency. Note that
despite the connection of RT to VDD,no
significant frequency change occurs for VDD
varying from 8V to 15V.It provides alsoa
synchronisation capability, when connectedtoan
external frequency source.
ORDERING NUMBERS
PENTAWATT HV PENTAWATT HV (022Y) PowerSO-10VIPer100B VIPer100B (022Y) VIPer100BSP
VIPER100B/BSP3/20
AVALANCHE CHARACTERISTICS
Symbol Parameter Max Value UnitID(ar) Avalanche Current, Repetitiveor Not-Repetitive
(pulse width limitedbyTj max, δ <1%)
E(ar) Single Pulse Avalanche Energy
(startingTj =25oC,ID =ID(ar)) (see fig.12) mJ
ELECTRICAL CHARACTERISTICS (TJ =25oC, VDD=13V, unless otherwise specified)
POWER SECTION
Symbol Parameter Test Conditions Min. Typ. Max. UnitBVDSS Drain-Source Voltage ID =1 mA VCOMP=0V 400 V
IDSS Off-State Drain Current VCOMP =0V TJ= 125oC
VDS =400V 1 mA
RDS(on) Static Drain Sourceon
Resistance =4A =4A TJ =100oC
0.9 1.1 Fall Time ID =0.2A Vin= 300V(1)
(see fig.3)
100 ns Rise Time ID =4A Vin= 300V (1)
(see fig.3) ns
COSS Output Capacitance VDS=25V 180 pF
(1)On Inductive Load, Clamped.
SUPPLY SECTION
Symbol Parameter Test Conditions Min. Typ. Max. UnitIDDch Start-up Charging
Current
VDD =5V VDS =70V
(see fig.2 and fig. 15) mA
IDD0 Operating Supply Current VDD =12V, FSW =0 KHz
(see fig.2) 16 mA
IDD1 Operating Supply Current VDD =12V, FSW= 100 KHz 15.5 mA
IDD2 Operating Supply Current VDD =12V, FSW =200 KHz 19 mA
VDDoff Undervoltage Shutdown (see fig.2) 8 V
VDDon Undervoltage Reset (see fig.2) 11 12 V
VDDhyst Hysteresis Start-up (see fig.2) 2.4 3 V
VIPER100B/BSP4/20
ELECTRICAL CHARACTERISTICS (continued)
OSCILLATORSECTION
Symbol Parameter Test Conditions Min. Typ. Max. UnitFSW Oscillator Frequency
Total Variation =8.2 KΩ CT =2.4nF
VDD =9 to15V
withRT ± 1% CT ± 5%
(see fig.6 and fig.9) 100 110 KHz
VOSCih Oscillator Peak Voltage 7.1 V
VOSCil Oscillator Valley Voltage 3.7 V
ERROR AMPLIFIERSECTION
Symbol Parameter Test Conditions Min. Typ. Max. UnitVDDre Vg Regulation Point ICOMP=0 mA (see fig.1) 12.61313.4 V
ΔVDDreg Total Variation TJ=0to 100o C2 %
GBW Unity Gain Bandwidth From Input= VDDto Output= VCOMP
COMP pinis open (see fig. 10)
150 KHz
AVOL Open Loop Voltage
Gain
COMP pinis open (see fig. 10) 45 52 dB DC Transconductance VCOMP= 2.5V (see fig.1) 1.1 1.5 1.9 mA/V
VCOMPLO Output Low Level ICOMP =-400 μAVDD =14V 0.2 V
VCOMPHI Output High Level ICOMP =400 μAVDD =12V 4.5 V
ICOMPLO Output Low Current
Capability
VCOMP =2.5V VDD =14V -600 μA
ICOMPHI Output High Current
Capability
VCOMP =2.5V VDD=12V 600 μA
PWM COMPARATOR SECTION
Symbol Parameter Test Conditions Min. Typ. Max. UnitHID ΔVCOMP/ΔIDpeak VCOMP=1to3V 0.35 0.5 0.65 V/A
VCOMPoff VCOMP offset IDpeak =10 mA 0.5 V
IDpeak Peak Current Limitation VDD=12V COMP pin open 6 8 11 A Current Sense Delay turn-off=1A 250 ns Blanking Time 250 360 ns
ton(min) Minimumon Time 350 ns
SHUTDOWN AND OVERTEMPERATURE SECTION
Symbol Parameter Test Conditions Min. Typ. Max. UnitVCOMPth Restart threshold (see fig.4) 0.5 V
tDISsu Disable Set Up Time (see fig.4) 1.7 5 μs
Ttsd Thermal Shutdown
Temperature
(see fig.8) 140 170 oC
Thyst Thermal Shutdown
Hysteresis
(see fig.8) 40 oC
VIPER100B/BSP5/20
Figure 1:VDD RegulationPoint
ICOMP
ICOMPHI
ICOMPLO
VDDreg
VDD
Slope=in mA/V
FC00150
Figure3: TransitionTime
VDS tr
10%Ipeak
10%VD
90%VD
FC00160
Figure2: Undervoltage Lockout
VDDon
IDDch
IDD0
VDDVDDoff
VDS=70V
Fsw=0
IDD
VDDhyst
FC00170
Figure4: Shut Down Action
VCOMP
VOSC
tDISsu
ENABLE
DISABLE
ENABLE
VCOMPth
FC00060
Figure5: BreakdownVoltagevs Temperature
Figure6: Typical Frequency Variation
Temperature ( C)
FC00180 204060 80 100 1200.95
BVDSS
(Normalized)
Temperature ( C) 20 40 60 80 100 120 140-5
FC00190
(%)
VIPER100B/BSP6/20
Figure8: Overtemperature Protection
Vdd
Vcomp
Ttsd
Ttsd-Thyst
Vddon
Vddoff
SC10191
Figure7: Start-upWaveforms
VIPER100B/BSP7/20
Figure9: Oscillator 2 3 5 10 20 30 5030
1,000 (kΩ)
Frequency
(kHz)
Oscillator frequencyvsRt andCt =1.5nF=2.7nF
Ct=4.7nF= 10nF
FC00030FC00030 2 3 5 10 20 30 500.5
0.9 (kΩ)
Dmax
Maximum duty cyclevsRt FC00040
OSC
VDD
~360
CLK
FC00050
ForRT> 1.2 KΩ:SW= 2.3TCT MAX MAX=1− 550T− 150
RecommendedD MAX values:
100KHz:> 80%
200KHz:> 70%
VIPER100B/BSP8/20
Figure 10: ErrorAmplifier Frequency Response
0.001 0.01 0.1 1 10 100 1,000(20)
Frequency (kHz)
Voltage
Gain
(dB)RCOMP=+∞
RCOMP= 270k
RCOMP= 82k
RCOMP= 27k
RCOMP= 12k
FC00200
Figure 11: ErrorAmplifier Phase Response
0.001 0.01 0.1 1 10 100 1,000(50)
Frequency (kHz)
Phase
RCOMP=+∞
RCOMP= 270k
RCOMP= 82k
RCOMP= 27k
RCOMP= 12k
FC00210
VIPER100B/BSP9/20
Figure 12: Avalanche Test Circuit
FC00195B
VIPer100B
13V
OSC
COMP SOURCE
DRAINVDD
BT2
12V
47uF
16Vx STHV102FIin parallel1mH
GENERATORINPUT
500us PULSE
BT1to20V
VIPER100B/BSP10/20