TS4990IDT ,1.2 W audio power amplifier with active low standby modeAbsolute maximum ratings (AMR)Symbol Parameter Value Unit(1)V Supply voltage 6VCC(2)V Input voltage ..
TS4990IJT ,1W AUDIO POWER AMPLIFIER WITH ACTIVE LOW STANDBY MODEELECTRICAL CHARACTERISTICSV = +5V, GND = 0V, T = 25°C (unless otherwise specified) CC ambSymbol ..
TS4990IJT ,1W AUDIO POWER AMPLIFIER WITH ACTIVE LOW STANDBY MODEABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit1)V6VCC Supply voltage 2)V G to VVi Input ..
TS4990IQT ,1.2W AUDIO POWER AMPLIFIER WITH ACTIVE LOW STANDBY MODETS49901.2W Audio Power Amplifier withActive-Low Standby Mode
TS4990IDT
1.2 W audio power amplifier with active low standby mode
August 2011 Doc ID 9309 Rev 13 1/33
TS49901.2 W audio power amplifier with active-low standby mode
Features Operating range from VCC= 2.2 V to 5.5V 1.2 W output power at VCC=5 V, THD= 1%, =1 kHz, with 8 Ω load Ultra-low consumption in standby mode (10 nA) 62 dB PSRR at 217 Hz in grounded mode Near-zero pop and click Ultra-low distortion (0.1%) Unity gain stable Available in 9-bump flip-chip, miniSO-8 and
DFN8 packages
Applications Mobile phones (cellular / cordless) Laptop / notebook computers PDAs Portable audio devices
DescriptionThe TS4990 is designed for demanding audio
applications such as mobile phones to reduce the
number of external components.
This audio power amplifier is capable of delivering
1.2 W of continuous RMS output power into an
8 Ω load at 5V.
An externally controlled standby mode reduces
the supply current to less than 10 nA. It also
includes an internal thermal shutdown protection.
The unity-gain stable amplifier can be configured
by external gain setting resistors.
Contents TS49902/33 Doc ID 9309 Rev 13
Contents Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.1 BTL configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Gain in a typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 Standby time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9 Application example: differential input, BTL power amplifier . . . . . . . . . . 23
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.1 Flip-chip package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TS4990 Absolute maximum ratings and operating conditions
Doc ID 9309 Rev 13 3/33 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings (AMR) All voltage values are measured with respect to the ground pin. The magnitude of the input signal must never exceed VCC + 0.3 V / GND - 0.3V. The device is protected in case of over temperature by a thermal shutdown active at 150°C. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor
between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations
while the other pins are floating.
Table 2. Operating conditions This thermal resistance is reached with a 100 mm2 copper heatsink surface. When mounted on a 4-layer PCB.
Typical application schematics TS4990
4/33 Doc ID 9309 Rev 13 Typical application schematics
Figure 1. Typical application schematics
Table 3. Component descriptions
TS4990 Electrical characteristics
Doc ID 9309 Rev 13 5/33
3 Electrical characteristics
Table 4. Electrical characteristics when VCC=+5 V, GND=0 V, Tamb =25°C
(unless otherwise specified) Standby mode is active when VSTBY is tied to GND. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
Electrical characteristics TS4990
6/33 Doc ID 9309 Rev 13
Table 5. Electrical characteristics when VCC= +3.3 V, GND=0 V, Tamb= 25°C
(unless otherwise specified) Standby mode is active when VSTBY is tied to GND. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
TS4990 Electrical characteristics
Doc ID 9309 Rev 13 7/33
Table 6. Electrical characteristics when VCC = 2.6V, GND = 0V, Tamb = 25°C (unless
otherwise specified) Standby mode is active when VSTBY is tied to GND. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
Electrical characteristics TS4990
8/33 Doc ID 9309 Rev 13
Figure 2. Open loop frequency response Figure 3. Open loop frequency response
Figure 4. Open loop frequency response Figure 5. Open loop frequency response
Figure 6. Open loop frequency response Figure 7. Open loop frequency response
TS4990 Electrical characteristics
Doc ID 9309 Rev 13 9/33
Figure 8. PSRR vs. power supply Figure 9. PSRR vs. power supply
Figure 10. PSRR vs. power supply Figure 11. PSRR vs. power supply
Figure 12. PSRR vs. power supply Figure 13. PSRR vs. power supply
Electrical characteristics TS4990
10/33 Doc ID 9309 Rev 13
Figure 14. PSRR vs. DC output voltage Figure 15. PSRR vs. DC output voltage
Figure 16. PSRR vs. DC output voltage Figure 17. PSRR vs. DC output voltage
Figure 18. PSRR vs. DC output voltage Figure 19. PSRR vs. DC output voltage
TS4990 Electrical characteristics
Doc ID 9309 Rev 13 11/33
Figure 20. PSRR vs. DC output voltage Figure 21. PSRR vs. DC output voltage
Figure 22. Output power vs. power supply
voltage
Figure 23. PSRR vs. DC output voltage
Figure 24. PSRR at F= 217 Hz vs.
bypass capacitor
Figure 25. Output power vs. power supply
voltage
Electrical characteristics TS4990
12/33 Doc ID 9309 Rev 13
Figure 26. Output power vs. power supply
voltage
Figure 27. Output power vs. load resistor
Figure 28. Output power vs. load resistor Figure 29. Output power vs. power supply
voltage
Figure 30. Output power vs. load resistor Figure 31. Power dissipation vs. Pout
TS4990 Electrical characteristics
Doc ID 9309 Rev 13 13/33
Figure 32. Power dissipation vs. Pout Figure 33. Power derating curves
Figure 34. Clipping voltage vs. power supply
voltage and load resistor
Figure 35. Power dissipation vs. Pout
Figure 36. Clipping voltage vs. power supply
voltage and load resistor
Figure 37. Current consumption vs. power
supply voltage
Electrical characteristics TS4990
14/33 Doc ID 9309 Rev 13
Figure 38. Current consumption vs. standby
voltage @ VCC = 5V
Figure 39. Current consumption vs. standby
voltage @ VCC = 2.6V
Figure 40. THD + N vs. output power Figure 41. Current consumption vs. standby
voltage @ VCC = 3.3V
Figure 42. Current consumption vs. standby
voltage @ VCC = 2.2V
Figure 43. THD + N vs. output power
TS4990 Electrical characteristics
Doc ID 9309 Rev 13 15/33
Figure 44. THD + N vs. output power Figure 45. THD + N vs. output power
Figure 46. THD + N vs. output power Figure 47. THD + N vs. output power
Figure 48. THD + N vs. output power Figure 49. THD + N vs. output power
Electrical characteristics TS4990
16/33 Doc ID 9309 Rev 13
Figure 50. THD + N vs. output power Figure 51. THD + N vs. frequency
Figure 52. SNR vs. power supply with
unweighted filter (20Hz to 20kHz)
Figure 53. THD + N vs. frequency
Figure 54. THD + N vs. frequency Figure 55. SNR vs. power supply with
unweighted filter (20Hz to 20kHz)
TS4990 Electrical characteristics
Doc ID 9309 Rev 13 17/33
Figure 56. Signal to noise ratio vs. power
supply with a weighted filter
Figure 57. Output noise voltage
device ON
Figure 58. Signal to noise ratio vs. power
supply with a weighted filter
Figure 59. Output noise voltage device in
Standby