IC Phoenix
 
Home ›  TT85 > TS4909IQT,Ultra low power stereo headphone amplifier with capacitor-less output
TS4909IQT Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
TS4909IQTSTN/a200avaiUltra low power stereo headphone amplifier with capacitor-less output


TS4909IQT ,Ultra low power stereo headphone amplifier with capacitor-less outputapplications for the TS4909 . . . 4Figure 2. Open-loop frequency response, R = 1 MΩ . .9LF ..
TS4962EIJT ,3W Filter-free Class D Audio Power AmplifierElectrical Characteristics Table 3. V = +5V, GND = 0V, V =2.5V, T = 25°C (unless otherwise speci ..
TS4962IQT ,3W filter-free Class D audio power amplifier with active low standby modeAbsolute maximum ratingsSymbol Parameter Value Unit(1) (2)V Supply voltage 6VCC(3)V Input voltage G ..
TS4962MEIJT ,3 W filter-free class D audio power amplifierFunctional descriptionBypass supply capacitor. Install as close as possible to the TS4962M to Cmini ..
TS4972IJT ,1.2W POWER AUDIO AMPLIFIER WITH STANDBY MODE ACTIVE HIGHELECTRICAL CHARACTERISTICSV = +5V, GND = 0V, T = 25°C (unless otherwise specified) CC ambSymbol ..
TS4975 ,Stereo Headphone Drive Amplifier with I2C Bus Digital Volume ControlElectrical characteristic for I² C Symbol Parameter Value UnitVILl Maximum Low level Input Voltage ..
UA709 ,HIGH-PERFORMANCE OPERATIONAL AMPLIFIERapplications and for the generation of special linear and nonlinear transfer functions. ABSOLUT ..
UA709HC ,HIGH-PERFORMANCE OPERATIONAL AMPLIFIERfeatures low offset, high input impedance, large input common mode range, high output swing under ..
UA709HM ,HIGH-PERFORMANCE OPERATIONAL AMPLIFIERGENERAL DESCRIPTION - The pA709 is a monolithic High Gain Operational Amplifier con- structed usin ..
UA709PC ,HIGH-PERFORMANCE OPERATIONAL AMPLIFIERELECTRICAL CHARACTERISTICS: TA " +25''C, 19 V < VS < t15 V unless otherwise specified. CHARACTER ..
UA709TC ,High-performance operational amplifierapplications and for the generation of special linear and nonlinear transfer functions. ABSOLUT ..
UA709TC ,High-performance operational amplifierELECTRICAL CHARACTERISTICS: TA " +25''C, 19 V < VS < t15 V unless otherwise specified. CHARACTER ..


TS4909IQT
Ultra low power stereo headphone amplifier with capacitor-less output
January 2013 Doc ID 11972 Rev 9 1/35
TS4909

Dual mode low power 150 mW stereo headphone amplifier with
capacitor-less and single-ended outputs
Datasheet − production data
Features
No output coupling capacitors necessary Pop-and-click noise reduction circuitry Operating from VCC = 2.2V to 5.5V Standby mode active low Output power: 158 mW at 5 V, into 16 Ω with 1% THD+N
max (1 kHz) 52 mW at 3.0 V into 16 Ω with 1% THD+N
max (1 kHz) Ultra-low current consumption: 2.0 mA typ. at Ultra-low standby consumption: 10 nA typ. High signal-to-noise ratio: 105 dB typ. at 5V High crosstalk immunity: 110 dB (F=1 kHz)
for single-ended outputs PSRR: 72 dB (F=1 kHz), inputs grounded, for
phantom ground outputs Low tWU: 50 ms in PG mode, 100 ms in SE mode Available in lead-free DFN10 3x3 mm
Applications
Headphone amplifier Mobile phone PDA, portable audio player
Description

The TS4909 is a stereo audio amplifier designed
to drive headphones in portable applications. The
integrated phantom ground is a circuit topology
that eliminates the heavy output coupling
capacitors. This is of primary importance in
portable applications where space constraints are
very high. A single-ended configuration is also
available, offering even lower power consumption
because the phantom ground can be switched off.
Pop-and-click noise during switch-on and switch-
off phases is eliminated by integrated circuitry.

Specially designed for applications requiring low
power supplies, the TS4909 is capable of
delivering 31 mW of continuous average power
into a 32 Ω load with less than 1% THD+N from a V power supply. Featuring an active low
standby mode, the TS4909 reduces the supply
current to only 10 nA (typ.). The TS4909 is unity
gain stable and can be configured by external
gain-setting resistors.
Contents TS4909
2/35 Doc ID 11972 Rev 9
Contents Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Gain using the typical application schematics . . . . . . . . . . . . . . . . . . . . . 24
4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 Single-ended configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 Phantom ground configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.3 Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TS4909 List of figures
Doc ID 11972 Rev 9 3/35
List of figures

Figure 1. Typical applications for the TS4909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Open-loop frequency response, RL = 1 MΩ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 3. Open-loop frequency response, RL = 100 Ω, CL = 400 pF. . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Open-loop frequency response, RL = 1 MΩ, CL = 100 pF . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Open-loop frequency response, RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 6. Open-loop frequency response, RL = 16 Ω, CL = 400 pF. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 7. Output swing vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 8. THD+N vs. output power, PHG, F = 1 kHz, RL = 16 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. THD+N vs. output power, PHG, F = 20 kHz, RL = 16 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . 10
Figure 10. THD+N vs. output power, PHG, F = 1 kHz, RL = 32 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . . 10
Figure 11. THD+N vs. output power, PHG, F = 20 kHz, RL = 32 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . 10
Figure 12. THD+N vs. output power, SE, F = 1 kHz, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 13. THD+N vs. output power, SE, F = 20 kHz, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . 10
Figure 14. THD+N vs. output power, SE, F = 1 kHz, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 15. THD+N vs. output power, SE, F = 20 kHz, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . 11
Figure 16. THD+N vs. output power, PHG, F = 1 kHz, RL = 16 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . . 11
Figure 17. THD+N vs. output power, PHG, F = 20 kHz, RL = 16 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . 11
Figure 18. THD+N vs. output power, PHG, F = 1 kHz, RL = 32 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . . 11
Figure 19. THD+N vs. output power, PHG, F = 20 kHz, RL = 32 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . 11
Figure 20. THD+N vs. output power, SE, F = 1 kHz, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 21. THD+N vs. output power, SE, F = 20 kHz, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . 12
Figure 22. THD+N vs. output power, SE, F = 1 kHz, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 23. THD+N vs. output power, SE, F = 20 kHz, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . 12
Figure 24. THD+N vs. frequency, PHG, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 25. THD+N vs. frequency, PHG, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 26. THD+N vs. frequency, SE, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 27. THD+N vs. frequency, SE, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 28. THD+N vs. frequency, PHG, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 29. THD+N vs. frequency, PHG, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 30. THD+N vs. frequency, SE, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 31. THD+N vs. frequency, SE, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 32. Output power vs. power supply voltage, PHG, RL = 16 Ω, F = 1 kHz. . . . . . . . . . . . . . . . . 14
Figure 33. Output power vs. power supply voltage, PHG, RL = 32 Ω, F = 1 kHz. . . . . . . . . . . . . . . . . 14
Figure 34. Output power vs. power supply voltage, SE, RL = 16 Ω, F = 1 kHz . . . . . . . . . . . . . . . . . . 14
Figure 35. Output power vs. power supply voltage, SE, RL = 32 Ω, F = 1 kHz . . . . . . . . . . . . . . . . . . 14
Figure 36. Output power vs. load resistance, PHG, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 37. Output power vs. load resistance, SE, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 38. Output power vs. load resistance, PHG, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 39. Output power vs. load resistance, SE, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 40. Output power vs. load resistance, PHG, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 41. Output power vs. load resistance, SE, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 42. Power dissipation vs. output power, PHG, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 43. Power dissipation vs. output power, SE, Vcc = 2.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 44. Power dissipation vs. output power, PHG, Vcc = 3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 45. Power dissipation vs. output power, SE, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 46. Power dissipation vs. output power, PHG, Vcc = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 47. Power dissipation vs. output power, SE, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 48. Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16
List of figures TS4909
4/35 Doc ID 11972 Rev 9
Figure 49. Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 50. Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 51. Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 52. Crosstalk vs. frequency, PHG, Vcc = 5 V, Av = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 53. Crosstalk vs. frequency, PHG, Vcc = 5 V, Av = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 54. SNR vs. power supply voltage, PHG, unweighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 55. SNR vs. power supply voltage, SE, unweighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 56. SNR vs. power supply voltage, PHG, A-weighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 57. SNR vs. power supply voltage, SE, A-weighted, Av = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 58. SNR vs. power supply voltage, PHG, unweighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 59. SNR vs. power supply voltage, SE, unweighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 60. SNR vs. power supply voltage, PHG, A-weighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 61. SNR vs. power supply voltage, SE, A-weighted, Av = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 62. Power supply rejection ratio vs. frequency vs. Vcc, PHG. . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 63. Power supply rejection ratio vs. frequency vs. Vcc, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 64. Power supply rejection ratio vs. frequency vs. gain, PHG . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 65. Power supply rejection ratio vs. frequency vs. gain, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 66. PSRR vs. frequency vs. bypass capacitor, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 67. PSRR vs. frequency vs. bypass capacitor, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 68. Current consumption vs. power supply voltage, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 69. Current consumption vs. power supply voltage, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 70. Current consumption vs. standby voltage, Vcc = 2.6 V, PHG . . . . . . . . . . . . . . . . . . . . . . 20
Figure 71. Current consumption vs. standby voltage, Vcc = 2.6 V, SE . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 72. Current consumption vs. standby voltage, Vcc = 3 V, PHG . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 73. Current consumption vs. standby voltage, Vcc = 3 V, SE . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 74. Current consumption vs. standby voltage, Vcc = 5 V, PHG . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 75. Current consumption vs. standby voltage, Vcc = 5 V, SE . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 76. Power derating curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 77. Higher cut-off frequency vs. feedback capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 78. Lower cut-off frequency vs. input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 79. Lower cut-off frequency vs. output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 80. Current delivered by power supply voltage in single-ended configuration . . . . . . . . . . . . . 24
Figure 81. Current delivered by power supply voltage in phantom ground configuration . . . . . . . . . . 25
Figure 82. Typical wake-up time vs. bypass capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 83. Internal equivalent circuit schematics of the TS4909 in standby mode . . . . . . . . . . . . . . . 28
Figure 84. TS4909 footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 85. DFN10 3x 3 pitch 0.5 mm exposed pad package mechanical drawing . . . . . . . . . . . . . . . 30
TS4909 Typical application schematics
Doc ID 11972 Rev 9 5/35 Typical application schematics
Absolute maximum ratings and operating conditions TS4909
6/35 Doc ID 11972 Rev 9 Absolute maximum ratings and operating conditions


Table 2. Absolute maximum ratings
All voltage values are measured with respect to the ground pin. Pd is calculated with Tamb = 25°C, Tjunction = 150°C. Caution: this device is not protected in the event of abnormal operating conditions, such as for example,
short-circuiting between any one output pin and ground, between any one output pin and VCC, and
between individual output pins.
Table 3. Operating conditions
The minimum current consumption (ISTBY) is guaranteed at ground for the whole temperature range. When mounted on a 4-layer PCB.
TS4909 Electrical characteristics
Doc ID 11972 Rev 9 7/35
3 Electrical characteristics

Table 4. Electrical characteristics at VCC = +5 V with GND = 0 V and Tamb = 25°C
(unless otherwise specified)
Guaranteed by design and evaluation.
Electrical characteristics TS4909
8/35 Doc ID 11972 Rev 9
Table 5. Electrical characteristics at VCC = +3.0V
with GND = 0 V, Tamb = 25°C (unless otherwise specified) (1)
All electrical values are guaranteed with correlation measurements at 2.6 and 5V. Guaranteed by design and evaluation.
TS4909 Electrical characteristics
Doc ID 11972 Rev 9 9/35
Table 6. Electrical characteristics at VCC = +2.6V
with GND = 0 V, Tamb = 25°C (unless otherwise specified)
Guaranteed by design and evaluation.
Electrical characteristics TS4909
10/35 Doc ID 11972 Rev 9



Figure 2. Open-loop frequency response,
RL = 1 MΩ
Figure 3. Open-loop frequency response,
RL = 100 Ω, CL = 400 pF
Figure 4. Open-loop frequency response,
RL = 1 MΩ, CL = 100 pF
Figure 5. Open-loop frequency response,
RL = 16 Ω
Figure 6. Open-loop frequency response,
RL = 16 Ω, CL = 400 pF
Figure 7. Output swing vs. power supply
voltage
TS4909 Electrical characteristics
Doc ID 11972 Rev 9 11/35



Figure 8. THD+N vs. output power, PHG,
F = 1 kHz, RL = 16 Ω, Av = 1
Figure 9. THD+N vs. output power, PHG,
F = 20 kHz, RL = 16 Ω, Av = 1
Figure 10. THD+N vs. output power, PHG,
F = 1 kHz, RL = 32 Ω, Av = 1
Figure 11. THD+N vs. output power, PHG,
F = 20 kHz, RL = 32 Ω, Av = 1
Figure 12. THD+N vs. output power, SE,
F = 1 kHz, RL = 16 Ω, Av = 1
Figure 13. THD+N vs. output power, SE,
F = 20 kHz, RL = 16 Ω, Av = 1
Electrical characteristics TS4909
12/35 Doc ID 11972 Rev 9



Figure 14. THD+N vs. output power, SE,
F = 1 kHz, RL = 32 Ω, Av = 1
Figure 15. THD+N vs. output power, SE,
F = 20 kHz, RL = 32 Ω, Av = 1
Figure 16. THD+N vs. output power, PHG,
F = 1 kHz, RL = 16 Ω, Av = 4
Figure 17. THD+N vs. output power, PHG,
F = 20 kHz, RL = 16 Ω, Av = 4
Figure 18. THD+N vs. output power, PHG,
F = 1 kHz, RL = 32 Ω, Av = 4
Figure 19. THD+N vs. output power, PHG,
F = 20 kHz, RL = 32 Ω, Av = 4
TS4909 Electrical characteristics
Doc ID 11972 Rev 9 13/35



Figure 20. THD+N vs. output power, SE,
F = 1 kHz, RL = 16 Ω, Av = 4
Figure 21. THD+N vs. output power, SE,
F = 20 kHz, RL = 16 Ω, Av = 4
Figure 22. THD+N vs. output power, SE,
F = 1 kHz, RL = 32 Ω, Av = 4
Figure 23. THD+N vs. output power, SE,
F = 20 kHz, RL = 32 Ω, Av = 4
Figure 24. THD+N vs. frequency, PHG,
RL = 16 Ω, Av = 1
Figure 25. THD+N vs. frequency, PHG,
RL = 32 Ω, Av = 1
Electrical characteristics TS4909
14/35 Doc ID 11972 Rev 9



Figure 26. THD+N vs. frequency, SE,
RL = 16 Ω, Av = 1
Figure 27. THD+N vs. frequency, SE,
RL = 32 Ω, Av = 1
Figure 28. THD+N vs. frequency, PHG,
RL = 16 Ω, Av = 4
Figure 29. THD+N vs. frequency, PHG,
RL = 32 Ω, Av = 4
Figure 30. THD+N vs. frequency, SE,
RL = 16 Ω, Av = 4
Figure 31. THD+N vs. frequency, SE,
RL = 32 Ω, Av = 4
TS4909 Electrical characteristics
Doc ID 11972 Rev 9 15/35



Figure 32. Output power vs. power supply
voltage, PHG, RL = 16 Ω, F = 1 kHz
Figure 33. Output power vs. power supply
voltage, PHG, RL = 32 Ω, F = 1 kHz
Figure 34. Output power vs. power supply
voltage, SE, RL = 16 Ω, F = 1 kHz
Figure 35. Output power vs. power supply
voltage, SE, RL = 32 Ω, F = 1 kHz
Figure 36. Output power vs. load resistance,
PHG, Vcc = 2.6 V
Figure 37. Output power vs. load resistance,
SE, Vcc = 2.6 V
Electrical characteristics TS4909
16/35 Doc ID 11972 Rev 9



Figure 38. Output power vs. load resistance,
PHG, Vcc = 3 V
Figure 39. Output power vs. load resistance,
SE, Vcc = 3 V
Figure 40. Output power vs. load resistance,
PHG, Vcc = 5 V
Figure 41. Output power vs. load resistance,
SE, Vcc = 5 V
Figure 42. Power dissipation vs. output power,
PHG, Vcc = 2.6 V
Figure 43. Power dissipation vs. output power,
SE, Vcc = 2.6 V
TS4909 Electrical characteristics
Doc ID 11972 Rev 9 17/35



Figure 44. Power dissipation vs. output power,
PHG, Vcc = 3 V
Figure 45. Power dissipation vs. output power,
SE, Vcc = 3 V
Figure 46. Power dissipation vs. output power,
PHG, Vcc = 5 V
Figure 47. Power dissipation vs. output power,
SE, Vcc = 5 V
Figure 48. Crosstalk vs. frequency, SE,
Vcc = 5 V, RL = 16 Ω, Av = 1
Figure 49. Crosstalk vs. frequency, SE,
Vcc = 5 V, RL = 32 Ω, Av = 1
Electrical characteristics TS4909
18/35 Doc ID 11972 Rev 9



Figure 50. Crosstalk vs. frequency, SE,
Vcc = 5 V, RL = 16 Ω, Av = 4
Figure 51. Crosstalk vs. frequency, SE,
Vcc = 5 V, RL = 32 Ω, Av = 4
Figure 52. Crosstalk vs. frequency, PHG,
Vcc = 5 V, Av = 1
Figure 53. Crosstalk vs. frequency, PHG,
Vcc = 5 V, Av = 4
Figure 54. SNR vs. power supply voltage,
PHG, unweighted, Av = 1
Figure 55. SNR vs. power supply voltage,
SE, unweighted, Av = 1
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED