TA8814 ,COLOR TRANSIENT IMPROVOR IC FOR TV
TA8814N ,COLOR TRANSIENT IMPROVER IC FOR TVTA8814NTARR1ANHIVI I‘The TA8814N is an integrated circuit having thefollowing two functions in the ..
TA8819F ,NTSC VIDEO CHROMA SIGNAL PROCESSOR SYNC PLAYBACK IC FOR LCD TVTA8819FTARR1QFHIVTC8819F can be directly driven by battery because itoperates on 3.3 to 7.5V.Effect ..
TA8822SN ,AV SWITCH FOR COLOR TVFEATURES0 Audio2 inputs, 1 circuitElectronic volume controlSSlP12-P-1 WtI --. - Ia Video 2 inputs, ..
TA8836F ,FOR LCD TVS, PIF AND SIF SYSTEMFEATURES
PIF circuitHigh input sensitivity
3-stage variable-gain PIF amplifier
Output with ..
TA8836F ,FOR LCD TVS, PIF AND SIF SYSTEMapplications of our products. No responsibility
is assumed by TOSHIBA CORPORATION for any infringe ..
TC660COA , 100mA CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TC660COA , 100mA CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TC670ECHTR , Tiny Predictive Fan Failure Detector
TC70CPA , MICROMASTER - SYSTEM SUPERVISOR WITH POWER SUPPLY MONITOR, WATCHDOG AND BATTERY BACKUP
TC7106 , 3-1/2 Digit Analog-to-Digital Converters
TC7106ACPL , 3-1/2 Digit Analog-to-Digital Converters
TA8814
COLOR TRANSIENT IMPROVOR IC FOR TV
TOSHIBA
TA8814N
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC
TA8814N
COLOR TRANSIENT IMPROVOR IC FOR TV
The TA8814N is an integrated circuit having the
following two functions in the shrink DIP 20 pin package:
the CTI (Color Transient Improvor) function to improve
protrusion and dullness of color signal edge, and
function to improve medium luminance and replay of
dark area detail by y correction.
FEATURES
0 CTI function (built-in DL)
0 y correction
0 Color bandwidth switching
o Clamp circuit
T l _ h "s]
_i_i_ijsiii"iu; il
SDIP20-P-300-1.78
Weight : 1.029 (Typ.)
961001 EBA2
O TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can
malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibilit of the buyer, when utilizing
TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TO HIBA product could cause loss
of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in tho
TOSHIBA Semiconductor Reliability Handbook.
0 The products described in this document are subject to foreign exchange and foreign trade control laws.
0 The information contained herein is presented only as a guide for the ap Iications of our products. No responsibility is assumed by TOSHIBA
CORPORATION for any infringements of intellectual property or other rights o the third parties which may result from its use. No license is granted
b implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
o T e information contained herein is subject to change without notice.
1997-11-05 1/15
1997-11-05 2/15
BLOCK DIAGRAM
TA8810AN
FSC Output 32
I Output 31
Q Input
I Input
0 Output ECD—‘Lnn J
79.1%:
Q Output
+12v 'i
flu +12V
Pulse System GND 0 3 f
4 Filter M1. “3: G
n Fsprnput I PIULSE :-
GENERATOR
—' CLAMP I
CLPMPZ
Ideal Cum
NA 7-2
y-sw -« 5 a YOFF
Narrow Band (625kHz:6dB)
DELAY l PHASE ‘_ DL
CONTROL DET.
Psaud Curve
Fsc Input C 7'1
MODE SW —1 C-BAND E CTIICNR
DL DL COM-
400M 400“ PAMTE CLAMP —. CURING
SWBgc Wide Band
GAIN I Axis
A AMP .. —
’ Gc _' T CONTROL 9 (TI Laval
XSAMP XS AMP XSAMP ADD.
Same as
| Axis
(ENTER
CLAMP CLAMP CLAMP —
—~ ADD. 1I5ATT
to Y circuit
Sub Contast
TA8814N - 2
mlnimum : $709
275nH /
2vpp @
I Output
CLAMP _@°_-:2M=
Y Input
400nH from AV Switch
m; l "U"
X2 AMP —|
(BY Output
TOSHIBA
TA8814N
TOSHIBA
TERMINAL CONNECTION
TERMINAL FUNCTION
TA8814N
DIAGRAM
NC. CD u.....? it) 7 Input
Y Output Q, Ci) .7 Output
N.C. Ci) D N.C.
Filter Adj. Ci; D GND
fsc Input (2 5. Ci) Color bandwidth switching
GND (2 28 Cs) Y Input
I Input Ct F- (i?) VCC
Q Input Cs) FBP Input
ITC (2 D I Output
QTC q E1) Q Output
No. PIN NAME
FUNCTION
INTERFACE CIRCUIT
1 N.C.
This is an non-connected pin.
Y Output
amplifier.
Since this pin is an emitter
open type, it is necessary to
connect a resistor between this
pin and GND.
This is an output pin of a twice
This is an non-connected pin.
Filter Adj.
This is a pin for a filter to
adjust internal delay lines
automatically.
0.1/1F capacitor is recommended
for this filter.
1997-11-05 3/15
TOSHIBA
TA8814N
PIN NAME
FUNCTION
INTERFACE CIRCUIT
fsc Input
This is an input pin of reference
signal (fgc) to adjust delay lines
automatically. This is also a y
correction curve switching pin.
0 ~3.6V Ideal curve
3.6~8.4V y correction off
8.4--12V Pseudo curve
llnput
This pin is for I input.
The input dynamic range is
1.21/p-p (Typ.). The delay time
between in/output is 400ns
(Typ.).
Q Input
This pin is for Q input.
The input dynamic range is
Im/p-p (Typ.).
The delay time between in/
output is 400ns (Typ.).
1997-11-05 4/15
TOSHIBA TA8814N
my PIN NAME FUNCTION INTERFACE CIRCUIT
9 ITC This is a pin for adjusting the
CTI level of I signal.
10 QTC
This is a pin for adjusting the
CTI level of Q signal.
11 Q Output This pin is for Q output. ®
1: 1’1
12 I Output This pin is for I output.
This pin is for FBP input.
13 FBP Input The input threshould level is
1.4V (Typ.). L
1: , a “a
JL J: it-, I,
14 VCC - -
1997-11-05 5/15
TOSHIBA
TA8814N
correction circuit.
The input level is 1up-p (Typ.).
my PIN NAME FUNCTION INTERFACE CIRCUIT
This pin is for Y input of y
15 Y Input
16 Color Bandwidth
This pin is a CTI on/off SW and
color bandwidth changing SW.
G by V
Switchin 0 ~3.6V Through mode ‘2
g 3.6~8.4V CTImode c ”K )t- 2
8.4~12V LPF mode Ir g» si/sri-si,,) fr.
s“ s;t" a a“ 'x']
i I i .
17 GND - -
18 N.C. This is an non-connected pin. -
Thi . . f Y t t f
19 yOutput IS plh IS f" . ou pu o y
correction circuit.
20 y Input This IS an input pm of twice
amplifier circuit.
1997-11-05 6/15
TOSHIBA TA8814N
MAXIMUM RATING (Ta =25°C)
CHARACTERISTIC SYMBOL RATING UNIT
Supply Voltage VCC 15 V
Power Dissipation PDmax 1400 (Note) mW
Input Signal Voltage ein 9 Vp-p
Operating Temperature Topr - 20--65 ''C
Storage Temperature Tstg - 55--150 ''C
(Note) When using the device at above Ta=25°C, decrease the power dissipation by 11.2mW for
each increase of 1°C.
ELECTRICAL CHARACTERISTICS
DC characteristics
DC voltage characteristics (Unless otherwise specified, Vcc=9V, Ta =25°C.)
ml PIN NAME SYMBOL T51? TEST CONDITION MIN. TYP. MAX. UNIT
. CUIT
2 Y Output v2 - - 6.2 6.4 6.8 v
4 Filter Adj. v4 - - 5.2 6.0 6.8 v
5 fsc Input v5 - - 5.8 6.0 6.2 v
6 GND v6 - - - 0 - v
7 I Input v7 - - 3.8 4.0 4.2 v
8 Q Input v3 - - 3.8 4.0 4.2 v
9 ITC v9 - - 7.8 8.0 8.2 v
10 QTC v10 - - 7.8 8.0 8.2 v
11 Q Output VII - - 4.7 4.9 5.1 v
12 I Output v12 - - 4.7 4.9 5.1 v
13 FBP Input v13 - - 0.71 0.76 0.81 v
14 Vcc v14 - - 11.0 12.0 13.0 v
15 Y Input v15 - - 3.8 4.0 4.2 v
16 fvtt'crdnagndwidth V16 - - 5.8 6.0 6.2 v
17 GND v17 - - - 0 - v
19 y Output v19 - - 3.8 4.0 4.2 v
20 y Input v20 - - 3.8 4.0 4.2 v
DC current characteristic
PIN TEST
No. PIN NAME SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
14 VCC ICC - - 45 55 70 mA
1997-11-05 7/15
TOSHIBA TA8814N
AC current characteristics (Unless otherwise specified, Vcc=9V, HVcc=9V, Ta =25°C.)
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
I Input Clamp Voltage VCL7 - (Note 1) 3.8 4.0 4.2 V
Q Input Clamp Voltage VCL8 - (Note 2) 3.8 4.0 4.2 V
I Input D Range VMAX7 - (Note 3) 1.0 1.2 1.3 Vp-p
Q Input D Range VMAX8 - (Note 4) 1.0 1.2 1.3 Vp-p
Gain Between I Input And Output GVI - (Note 5) 0.1 0.5 0.9 dB
Gain Between Q Input And Output GVQ - (Note 6) 0 0.4 0.8 dB
Delay Time Between I Input And
Output TDI - (Note 7) 360 400 440 ns
Delay Time Between Q Input And
Output TDQ - (Note 8) 360 400 440 ns
I Bandwidth Switch Offset Voltage AVSWI - (Note 9) - 0 $6.0 mV
Q Bandwidth Switch Offset Voltage AVSWQ - (Note 10) - O $6.0 mV
Frequency Characteristics On Narrow
Bandwidth Mode And Maximum ITC GVPI - (Note 11) 2.7 5.7 8.7 dB
Frequency Characteristics On Narrow
- N 12 7. 1 . 1 . B
Bandwidth Mode And Maximum QTC GVPQ ( ote ) 6 0 6 3 6 d
Secondary Differential AMP Coring
Band (I Axis) VCRI - (Note 13) 3.0 6.0 9.0 mVp-p
Secondary Differential AMP Coring
Band (Q Axis) VCRQ - (Note 14) 3.0 6.0 9.0 mvp-p
Bandwidth Switching Threshold
Value I VTHC1 - (Note 15) 8.2 8.5 8.8 V
Bandwidth Switching Threshold
Value ll VTHC2 - (Note 16) 3.3 3.6 3.9 v
Clamp Pulse Phase TCLB - (Note 17) 6.0 6.3 6.6 ps
Clamp Pulse Width TCLW - (Note 18) 1.4 1.81 2.2 gs
Y Input Clamp Voltage VCL15 - (Note 19) 3.8 4.0 4.2 v
I/Q Output Residual Noise VN - (Note 20) 0.7 1.2 1.7 mi/p-p
y Correction I Point I V714 - (Note 21) 115 120 125 mV
y Correction I Point II Vyl-2 - (Note 22) 697 704 711 mV
y Correction 11 Point I Vy2-1 - (Note 23) 134 141 148 mV
y Correction II Point II Vy2-2 - (Note 24) 695 705 715 mV
Y Amplifier Total Gain GVY - (Note 25) 8.2 8.7 9.2 dB
Y Amplifier Total Frequency
. . F - N 2 1 - MH
Characteristic CY ( ate 6) 0 30 Z
1997-11-05 8/15
TEST CONDITION
MEASUREMENT CONDITION (Vcc=9V, Ta=2513°C)
SW 81 VR MODE
MEASUREMENT METHOD
I Input Clamp Voltage
Measure the TP7 voltage.
0 Input Clamp Voltage
Measure the TP8 voltage.
| Input D Range
SW16 VR10 VR9 (1) Input a 500kHz signal into |N3.
(2)Whi|e increasing input amplitude,
c Min. Min. measure the amplitude at TP7 when
TP12 output waveform starts to
distort.
0 Input D Range
(1) Input a SOOkHz signal into |N3.
(2)While increasing input amplitude,
c Min. Min. measure the amplitude at TP8 when
TP11 output waveform starts to
distort.
Gain Between | Input
And Output
(1) Input a 0.5Vp-p, SDOkHz signal into
(2) Measure the amplitude at TP12, which
c Min. Min. is Vp12.
3 l | :
( )Ca cu ate VP12
GVI = 20309 WP—
Gain Between Q Input
And Output
(1) Input a 0.5Vp-p, SOOkHz signal into
(2) Measure the amplitude at TP11, which
c Min. Min. is Vp11.
(3) Calculate :
GVQ = 20809 W
Delay Time Between I
Input And Output
sw4 SW16 VR9 vmo (1) Input a 0.5Vp.p, 3.58MHz sine wave
into TPSa.
a c Min. Min. (2) Input a 0.5Vp.p, 500kHz signal into
(3) Observe a TP12 signal and measure
the delay time between TP7 and TP12.
1997-11-05 9/15
TA8814N - 9
TOSHIBA
TA8814N
MEASUREMENT CONDITION (VCC = 9V, Ta = 25 i 3°C)
SW & VR MODE
SW8 SW15 SW4 VR9 VR10
MEASUREMENT METHOD
Delay Time Between Q
Input And Output
b a a c Min.
(1) Input a 0.5Vp-p, 3.58MHz sine wave
into TP5a.
(2) Input a 0.5Vp-p, 500kHz signal into
(3) Observe a TP11 signal and measure
the delay time between TP8 and TP11.
| Bandwidth Switch
Offset Voltage
a c 3 Min. Min.
(1) Measure the TP12 voltage when SW16
is a. (Va)
(2) Measure the TP12 voltage when SW16
is c. (Vc)
AVSWI =Va - Vc
Q Bandwidth Switch
Offset Voltage
a c a Min. Min.
(1) Measure the TP11 voltage when SW16
is a. (Va)
(2) Measure the TP11 voltage when SW16
is c. (Vc)
AVSWQ = Va — Vc
Frequency Characteristics
0n Narrow Bandwidth
Mode And Maximum ITC
SW16 SW4 VR9
a c a a Max.
(1) Input a 50mVp.p, 1.0MHz signal into
(2) Measure the amplitude at TP12, which
is VP].
(3) Calculate :
GVPI = 20309
Frequency Characteristics
On Narrow Bandwidth
Mode And Maximum
b c a a Max.
(1) Input a 50mVp.p, 1.0MHz signal into
(2) Measure the amplitude at TP11, which
is qu.
(3) Calculate :
GVPQ 20809 0.05
TA8814N - 10
TOSHIBA
TA8814N
NOTE ITEM
MEASUREMENT CONDITION (Vcc =9V, Ta = 25 i 3°C)
SW & VR MODE
SW15 SW16 SW4 VR9 VR10
MEASUREMENT METHOD
Secondary Differential
13 AMP Coring Band (I Axis)
a a b Max. Max.
(1) Input a 1.5MHz
signal into |N3.
(2) Set VR9 minimum,
and adjust VR4 so
that the TP12
amplitude turns
minimum.
(3) Set VR9 maximum. -
(4) Measure amplitude characteristic
between TP7 and TP12, and read VCRI-
Secondary Differential
14 AMP Caring Band
(0 Axis)
a a b Max. Max.
(1) Input a 1.5MH2
Signal into |N3. +Pin11
(2) Set VR10
minimum, and
adjust VR4 so that — '
the TP11
amplitude turns
minimum.
(3) Set VR10
maximum.
(4) Measure amplitude characteristic
between TP8 and TP11, and read
Bandwidth Switching
‘5 Threshold Value I
Decrease TP16 voltage from 12V and
measure the voltage at which the TP11
and TP12 voltages change.
Bandwidth Switching
16 Threshold Value II
Increase TP16 voltage from 0V and
measure the voltage at which the TP11
and TP12 voltages change.
TA8814N - 11
TOSHIBA
TA8814N
NOTE ITEM
MEASUREMENT CONDITION (Vcc = 9V, Ta = 25 i 3°C)
SW & VR MODE
SW7 SW8 SW15 SW16 SW4 VR9
MEASUREMENT METHOD
17 Clamp Pulse Phase
a a OPEN — —
18 Clamp Pulse Width
(1) Ground TP15 with
ZOkQ resistance. . _
(2) Measure TCLB and Tags 5 F86; "9:13:
TCLw- n
"'5 ?‘- Pin15
T(ZLW waveform
19 Y Input Clamp Voltage
a a c b a Max.
Measure the TP15 voltage.
I/ Q Output Residual
a a a b a Max.
Measure residual noises (0~20MHz)
during picture periods at TP11 and 12.
21 7 Correction I Point I
22 7 Correction I Point H
(1) While increasing
TP15 voltage,
measure the
TP20 voltage.
(2) Read V20A,
V203. and Vzoc-
(3) Calculate :
V71-1 = V203 - V20A
(4) Calculate :
Vy1-2 = Vzoc — V20A
23 7 Correction II Point I
24 7 Correction II Point H
(1) Same as (1), (2) of NOTE 21, 22.
(2)Ca|culate :
V72-1 = V203 - VZOA
(4) Calculate :
Vy2-2 = V203 — V20A
TA8814N - 12
TOSHIBA
TA8814N
MEASUREMENT CONDITION (VCC =9V, Ta = 25 i 3°C)
SW & VR MODE
MEASUREMENT METHOD
25 Y Amplifier Total Gain
(1) Input a 0.1Vp.p, 500kHz signal into
(2) Measure the amplitude at TP2, which
(3) Calculate :
GW = 204309 V2
Y Amplifier Total
Frequency Characteristic
(1) Input a 0.1Vp.p
sweep signal into
b (2) Measure the
frequency
characteristics
between TP15 and
TP2, and read Foy.
TA8814N - 13
TOSHIBA
TA8814N
TOSHIBA
TEST CIRCUIT
TA8814N
abvscw
012/460
20 19 18 i 16 15 (it
+ '3 TP12
TA8814N
0.033/xF®
+ 315921,)
....... 2V
I I I I 0 FBP inputted
into TP13
_.| F-
Input 3.58MHz, Om/p-p sine wave
into TP5a
1997-11-05 14/15
TOSHIBA
OUTLINE DRAWING
SDlP20-P-300-I .78
TA8814N
i-lr-ll-Iron-nr-nr"-)."")'-)- "
cJclL.-JL-JclcJclclclCl t
19.1MAX V
18.6i02
Ct cr?
1 Hi Fl
1 .299TYP e
' ltHco.1
Weight : 1.02g (Typ.)
l l 0.46:1:0.1 EgWilii2
www.ic-phoenix.com
.