IC Phoenix
 
Home ›  TT2 > TA1310AN,NTSC Video / Chroma / Deflection and Distorition Compensation IC
TA1310AN Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
TA1310ANTOSN/a157avaiNTSC Video / Chroma / Deflection and Distorition Compensation IC
TA1310ANTOSHIBA ?N/a777avaiNTSC Video / Chroma / Deflection and Distorition Compensation IC


TA1310AN ,NTSC Video / Chroma / Deflection and Distorition Compensation ICTA131OANNTSC VIDEO, CHROMA, DEFLECTION, AND DISTORTIONCOMPENSATION IC (WITH YUV INTERFACE AND ACB)T ..
TA1310AN ,NTSC Video / Chroma / Deflection and Distorition Compensation ICFEATURESVideo Signal Processing. . _. . Built In Y delay line Sl0lP-Sfi-P-fiM-1 Wt0 Black stretch ..
TA1310N ,BUILT-IN VIDEO, CHROMA, AND SYNC SIGNAL PROCESSOR AND DEFLECTION CORRECTION IC FOR NTSC COLOR TV (YUV INTERFACE SUPPORTED)TA1310BN TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT TENTATIVE SILICON MONOLITHIC TA1310BN BUILT-I ..
TA1316AN ,YCbCr/YPbPr Signal and Sync Processor for Digital TV, Progressive Scan TV and Double Scan TVTA1316AN Toshiba Bipolar Linear Integrated Circuit Silicon Monolithic TA1316AN YCbCr/YPbPr Signa ..
TA1317AN ,Deflection Processor IC for TVFeatures • Vertical drive (AC/DC-coupling) • Picture height adjustment • Vertical shift adjustmen ..
TA1317AN ,Deflection Processor IC for TVTA1317AN TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA1317AN Deflection Proces ..
TC4052BP ,DIFFERENTIAL 4-CHANNEL MULTIPLEXER/DEMULTIPLEXERTO S H I BA TC4051 B P/B F/B FN/B FT,TC4052B P/B F/B FN/B FT,TC4053B P/B F/B FN/B FTTC4051BP, TC405 ..
TC4052BP. ,DIFFERENTIAL 4-CHANNEL MULTIPLEXER/DEMULTIPLEXERTO S H I BA TC4051 B P/B F/B FN/B FT,TC4052B P/B F/B FN/B FT,TC4053B P/B F/B FN/B FTTC4051BP, TC405 ..
TC4053 ,SINGLE 8-CHANNEL MULTIPLEXER/DEMULTIPLEXERapplications of our products. No responsibility is assumed by TOSHIBA CORPORATIONfor any infringeme ..
TC4053 ,SINGLE 8-CHANNEL MULTIPLEXER/DEMULTIPLEXERTC4051BP, TC4051BF, TC4051BFN, TC4051BFTTC4052BP, TC4052BF, TC4052BFN, TC4052BFTTC4053BP, TC4053BF, ..
TC4053BF ,TRIPLE 2-CHANNEL MULTIPLEXER/DEMULTIPLEXERTO S H I BA TC4051 B P/B F/B FN/B FT,TC4052B P/B F/B FN/B FT,TC4053B P/B F/B FN/B FTTC4051BP, TC405 ..
TC4053BFN ,TRIPLE 2-CHANNEL MULTIPLEXER/DEMULTIPLEXERTO S H I BA TC4051 B P/B F/B FN/B FT,TC4052B P/B F/B FN/B FT,TC4053B P/B F/B FN/B FTTC4051BP, TC405 ..


TA1310AN
NTSC Video / Chroma / Deflection and Distorition Compensation IC
TOSHIBA TA1310AN
TENTATIVE TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC
"rA'il3'il (DAN
NTSC VIDEO, CHROMA, DEFLECTION, AND DISTORTION
COMPENSATION IC (WITH YUV INTERFACE AND ACB)
TA1310AN is Video Chroma and deflection signal.
Processing IC for NTSC. On a 56-pin shrink DIP package.
TA1310AN has deflection distortion compensation.
TA1310AN uses an " Bus controls for controllings and
settings.
FEATURES
Video Signal Processing
0 Built-in Y delay line
SDIP-56-P-600-1.78
0 Black stretch Weight : 5.55g (Typ.)
0 DC restoration ratio compensation
0 Aperture controlled sharpness
0 Output for velocity scan modulation (VSM)
0 White peak suppression (WPS)
Chroma Signal Processing
0 Built-in chroma BPF/TOF
o R-Y and B-Y outputs
0 Color/BW situation output by read bus
980910EBAI
OTOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.
It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid
situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or
damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions
and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
OThe products described in this document are subject to the foreign exchange and foreign trade laws.
OThe information contained herein is presented only as a guide for the applications of our products. No responsibility
is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third
parties which may result from its use. No license is granted by implication or otherwise under any intellectual
property or other rights of TOSHIBA CORPORATION or others.
OThe information contained herein is subject to change without notice.
2000-04-10 1/104
TOSHIBA
Signal Processing
Counts down 32fH
Dual AFC
Vertical AGC
HD and VD outputs
Vertical frequency fixed mode
Horizontal and Vertical position alignment
DC outputs for vertical centering
Text Signal Processing
Analog RGB inputs
Digital RGB inputs
Halftone switch (YM)
Cutoff and drive alignment
YUV inputs
Deflection Correction Function
Horizontal and Vertical amplitude adjustment
Vertical linearity correction
Vertical S correction
Vertical EHT correction
E/W parabola correction
E/W corner correction
E/W trapezium correction
TA1310AN
2000-04-10 2/1 04
2000-04-10 3/1 04
BLOCK DIAGRAM
DC RES- BLACK
TORATION PEAK VC
CORR. DET. V IN BAV IN R-Y IN (5V
Y CLAMP CLAMP
PED Smommng
Base Band TINT
BLACK STRETCH/
Black Level
Carremon
IN T / EXT SW
DC restoration COLOR
rntwo covrenion UNI COLOR
RAYI'BAY CLAMP
DELAY LINE
ShARPNESS SAXQSAJEE
SUB CONTRAST SELECT
UNLCOLOR
BR|GHTNESS GAY ‘
Wps ; CLAMP _
HALF TONE HALF TONE
COLOR y
(RGH BRIGHTNESS)
VSM on In” SW
RGE CONTRAST
1 P 3 4 5 6
OUT X'tal OUT OUT
KILLER
RGB MATRIX
050 AMP
7 8 9 1
VSM GND 1 R IN G N E IN Ys/an 051) R 050 G 050 B 050
OUT IN
TA131UAN 3
IN IN IN Y5 IN
APC CHROMA DL CORREC AFC 1 VSEP SYNC
FILIER IN GND 3 OUT -T|ON 32fH FILTER FILTER IN
4 4S 4 7 1
Blanking
R-Y / B-Y
R63 7 COR
RGB DRIVE
CUT OFF
REVERCE y AC3 5W
RGE OUT
BLANKING
1 ‘1 1 1 17 1 1
ABL 1N VK R OUT G OUT 8 OUT V
OUT FILTER FILTER FILTER
DEF SYNC VD HD
VCC OUT HOUT FBPIN OUT OUT GNDZ SDA SCL
Ilc BUS IF
HD OUT
EXT BPP IN
200M SW
GEOMETRIC
CORRECTION
CENTER
IK IN V CEN- EW. FE EW V OUT V.NFB V.AGC V. EHT‘V
TERING OUT FILTER RAMP
TOSHIBA
TA1310AN
TOSHIBA TA1310AN
PIN FUNCTION
'2"? SYMBOL FUNCTION INTERFACE l/O SIGNAL
1 VSM OUT VSM means Verocity
Scanning Modulation. : I
4MHz peak
2 GND I The terminal for GND
of Video/Y/TEXT -
circuits.
3 RIN The terminals for
4 GIN Analog RGB signal c:
5 BIN input. F" 1kQ 100IRE =0diVp-p
Input signals clamped
by coupling capacitors. c
(*) : Even when not g
in use, connect 3.7V
to GND with a
couplipg Buffer Clamp
capacitor.
6 YSIYM IN The terminal for
switching of Analog Ym RGB
RGB Mode and Half 3009 2.1V
tone. Ys Half Tone
- 0.7V
7 OSD R IN The terminals for
8 OSD G IN Analog OSD RGB signal -
9 OSD B IN input. 1kQ 100IRE =1.25vp_p
Input signals clamped 7,8,9
by coupling capacitors. Cl
(*) : Even when not E
in use, connect 1&9 5.5V
to GND with a
coupling
capacitor.
2000-04-10 4/1 04
TOSHIBA
TA1310AN
SYM BOL
FUNCTION
INTERFACE
l/O SIGNAL
OSD Ys IN
The terminal for
switching of internal
RGB signals and
Analog OSD RGB
signals (Pin 7, 8, 9).
1.3 km
Analog RGB
ABL IN
The terminal for the
external unicolor and
brightness control.
ABL Gain and ABL
start point can be set
by using BUS.
OPEN 6.0 V
VK OUT
The terminal outputs
signal in order to
input in H-correction
(Pin 42).
The signal corresponds
to RGB signal.
2009 Ci
The terminals for RGB
signal output.
13,14,15
1 .SmA
Vcc (9 V)
The terminal for VCC
Supply 9V.
The terminals is
connected to 9V(typ.).
R Filter
G Filter
B Filter
Control the RGB
output cutoff voltage,
holding the standard
pulse period
comparator output to
one vertical period.
At ACB ON, the filters
operate so that the IK
IN (pin 20) voltage
equals the value
determined by the bus
(when RBG cutoff :
center, 1Vp-p.)
The filters must be low
leakage current filters.
17,18,19
2000-04-10 5/104
TOSHIBA TA1310AN
K"? SYMBOL FUNCTION INTERFACE l/O SIGNAL
20 IK IN Terminal for detection
of IK feedback signal.
Leakage canceller 12m
incorporated. I I I I I I IV
1V R G B
21 V Centering The terminal for the
DAC output that
controlled by BUS (V-
center).
32 km 1 k0
22 EW F3 The terminal for E/W
feedback. (" M
-r(- 1 k9.
23 EW OUT The terminal for
output of E/W drive
signal.
24 V OUT The terminal for
output of Vertical
drive signal.
25 V NFB The terminal for input
of Vertical negative
feedback.
If input voltage is less 12.5kQ
than 2V, V-Guard 3.
function works and J
blanks RGB signal "
output.
2000-04-10 6/104
TOSHIBA
TA1310AN
No. SYMBOL
FUNCTION
INTERFACE
I/O SIGNAL
26 V AGC Filter
27 V RAMP
The terminal to be
connected a capacitor
for Automatic gain
control of Vertical
RAMP signal.
5000 5000
The terminal to be
connected a capacitor
to generate Vertical
RAMP signal.
28 EHT V
The terminal for the
Vertical EHT input.
The terminal for
input of " BUS
clock.
The terminal for
input/output of "
BUS data.
2000-04-10 7/1 04
TOSHIBA TA1310AN
Kl"? SYMBOL FUNCTION INTERFACE l/O SIGNAL
31 GND II The terminal for the
GND of DEF/IZC/EW. -
32 HD OUT The terminal for the
HD pulse. 5V
The suspension period HD I I I I ov
Pict r
of the-Blaek peak a l periide l
stretching IS extended i,", I ,
by inputting the W a Jl,1_tn,
external pulse. J W l l
33 VD OUT The terminal for the
VD pulse.
n, fr,
i', ov
34 FBP IN The terminal for the
flyback pulse to
control H-BLK and H- TI
AFC. Ci? 2000 .
E E '] f l >
H AFC]; m
£5, it
J w' Nil H BLK
35 H OUT The terminal for the
Horizontal output.
SkQ 500
n n 5 Vp-p
2000-04-10 8/1 04
TOSHIBA
TA1310AN
SYM BOL
FUNCTION
INTERFACE
l/O SIGNAL
SYNC OUT
The terminal for
output of the
synchronizing signal
that was separated in
the synchronous
separation circuit.
This terminal is of the
open collector system.
Connect the pull-up
resistor.
DEF VCC
The terminal for VCC
supply 9V of DEF.
(Caution)
Be sure to design the power
supply so that when the
power is Off, DEF VCC is
below 1.9V.
Y/SYNC IN
The terminal for
input of the
synchronous
separation circuit.
Input via clamp
capacitor.
(Auto slice)
Fixed slice
1 Vp-p
V SEP Filter
The terminal to be
connected a capacitor
for the Vertical
synchronous
separation circuit.
AFC I Filter
Connect the filter for
horizontal AFC I
detection.
The frequency of the
horizontal output
varies depending on
the voltage at this
300 Q 30 km
-wEf- 7.5 km (
2000-04-10 9/104
TOSHIBA
TA1310AN
SYM BOL
FUNCTION
INTERFACE
I/O SIGNAL
32 fh VCO
Connect the ceramic
oscillator for
horizontal oscillation.
The oscillator to be
used is CSB503F30,
made by Murata
electronics.
H Correction
The terminal to
correct distortion of
picture in the case of
high-tension
fluctuation.
Input the AC
component of high
tension fluctuation.
This terminal can be
inputted VK output
(Pin 12).
DL OUT
The terminal outputs
delayed Y signal.
Input this signal to Y
IN (Pin 54) via a
capacitor.
GND III
The terminal for GND
of DEF linear/Chroma
circuits.
CHROMA IN
The terminal for the
chroma input.
1.77 V
286 ml/p-p
2000-04-10 10/104
TOSHIBA
TA1310AN
SYM BOL
FUNCTION
INTERFACE
l/O SIGNAL
The terminal to be
connected APC filter.
The oscillation
frequency of VCXO
varies depending on
the voltage at this
B-Y OUT
The terminal outputs
the B-Y signal.
R-Y OUT
The terminal outputs
the R-Y signal.
48 Filter
_.7‘\_
\__v__J
47, 48
300m Vp-p
(Rainbow
color bar)
300 ml/p-p
(Rainbow
color bar)
The terminal to be
connected with a
3.579545 MHz X'tal
oscillator.
The oscillated
frequency, f0, is
controlled by series
capacitors, and
frequency adjustment
range can be
expanded by putting
capacitors in parallel.
CW OUT
The terminal for CW
output generated in
2000-04-10 11/104
TOSHIBA
TA1310AN
SYM BOL
FUNCTION
INTERFACE
l/O SIGNAL
The terminal for VCC
supply 5 V.
R-Y IN
B-Y IN
The terminals for the
R-Y/B-Y signal input.
Input signals clamped
by coupling
capacitors.
Even when not
in use, connect
to GND with a
coupling
capacitor.
52, 53
The terminal for the
Y signal input.
Input the Y signals
clamped by coupling
capacitors.
CA" 1m
100|RE
140 IRE =1ho-p
BLACK PEAK
The terminal to be
connected the filter
controlling the black
stretching gain of the
black stretching
circuit.
The black stretching
gain varies depending
on the voltage at this
”r29 ii,-,
RESTORATIO
N CORR.
The terminal to be
connected capacitor
for DC restoration
correction control.
Open this pin if not
use the DC restoration
correction.
12/104
TOSHIBA TA1310AN
BUS CONTROL MAP
Slave address .' 88H (WRITE)/89H (READ)
D7 D6 D5 D4 D3 D2 D1 D0
00 ABL POINT UNI-COLOR
01 TEST BRIGHTNESS
oz Y-MUTE COLOR
03 TINT |TOF-SW
04 SHARPNESS l ABL GAIN
05 RGB BRIGHTNESS VERTICAL POSITION uv-sw
06 G DRIVE GAIN V-AGC
07 B DRIVE GAIN VSM-G
08 R CUT OFF
09 G CUT OFF
0A B CUT OFF
OB HORIZONTAL POSITION I B. S. POINT
oc VERTICAL SIZE ZOOM SERVICE
0D HORIZONTAL SIZE HV-FIX
0E E/W PARABOLA l V-S CORRECTION
OF V-LIN CORRECTION SUB CONTRAST
IO E/W TRAPEZIUM E/W CORNER
11 COL-y ACB MODE V-BLK START PHASE
RY/GY DL-
12 PHASE/GAIN MODE V-BLK STOP PHASE
13 VERTICAL CENTERING RGB-y
v CENTERING
14 DAC sw BASE BAND TINT
READ MODE
I l PORES l Y-IN |RGB-OUT| H-OUT l V-OUT |EW-OUT| COLOR l ED2 I
The preset value for D7 is 1. The preset values for D0 to D6 are 0.
2000-04-10 13/104
TOSHIBA TA1310AN
BUS CONTROL CHARACTERISTICS BY FUNCTION
Write mode
No. OF PRESET
ITEM DATA BITS VALUE
Unicolor (UNl-COLOR)/ I - . -18dB
RGB Contrast 000000 18dB 111111 ' OdB 6 (000000)
Brightness (sub-brightness I - . -40 (IRE)
included) (BRIGHTNESS) 0000000 40 (IRE) 1111111 ' +40 (IRE) 7 (0000000)
Color (sub-color included) CK) -co
. - 1111111 . B 7
(COLOR) 0000000 ' +6d (0000000)
Tint (sub-tint included) I - o I o i0°
(TINT) 0000000 32 1111111 ' +32 7 (1000000)
Picture Sharpness 000000 . -6dB 111111 ; +12dB 6 +6dB
(PlCTURE-SHARPNESS) (at 2.4 MHz) (100000)
Sub Contrast I I -3dB
(SUB-CONTRAST) 0000 3dB 1111 ' +3dB 4 (0000)
DC Output for Vertical C
. enter
Centering 0000000 . 1.0V 1111111 ; 4.0V 7 (1000000)
(VERTICAL CENTERING)
ExternaI/Internal Color INT
Difference Switching 0 . INT 1 ; EXT 1 (0)
(UV-SW)
RGB Brightness I - I Center
(RGB-BRIGHTNESS) 0000 20 (IRE) 1111 ' +20 (IRE) 4 (1000)
00000000 . -0.5V 11111111; +0.5V
RGB Cut Off - At bus control - 8x3 -0.5V
(RGB-CUTOFF) 00000000 . 0.5 Vp-p 11111111 ; 1.5 Vp-p (00000000)
- IK input amplitude in ACB mode-
G/B Drive Gain I I Center
(GB-DRIVE GAIN) 0000000 5dB 1111111 ' +3dB 7x2 (1000000)
VSM Gain (VSM-G) 0 . ON 1 ; OFF 1 'lil
Zoom Mode Switching normal
. N I 1 . Z M 1
(ZOOM) 0 orma ' 00 (0)
Black Stretching Start 000 . Min/black str-etch off Black
Point (B S POINT) (black correction on) 3 stretch OFF
. . 111 . MAX/50 (IRE) (000)
ABL Detection Voltage I I Center
(ABL POINT) 00 MIN 11 ' MAX 2 (10)
ABL Sensitivity I I MIN
(ABL GAIN) 00 MIN 11 ' MAX 2 (00)
Horizontal Position 00000 . -3ps (left shift) 5 Center
(HORIZONTAL POSITION) 11111 . +3ps (10000)
Horizontal and Vertical 00/01 . normal normal
Frequency Fixed Mode 10 . AFC OFF (Free run) & V = 263 (H) 2 (00)
(HV-FIX) 11 . AFC OFF (Free run) & V = 262.5 (H)
Vertical Pulse Phase I I 0 (H)
(VERTICAL-PULSE PHASE) 000 OH 111 ' 7H DELAY 3 (000)
. 0 . normal 1 ; Service mode normal
Service Mode (SERVICE) (V-Stop) 1 (0)
Test Mode (TEST MODE) 1 ; normal 0 ; RGB BLK OFF 1 nlri')"l
14/104
TOSHIBA TA1310AN
No. OF PRESET
ITEM DATA BITS VALUE
TOF Switching (TOF-SW) 0 ; BPF mode 1 ; TOF mode 1 "g
V-AGC Time Constant fast
:f 1 . I 1
(V-AGC) 0 ' ast ' sow (0)
Vertical Amplitude . I Center
(VERTICAL SIZE) 000000 ' MIN 111111 , MAX 6 (100000)
Vertical Linearity Center
Correction 0000 ; Lower stretch 1111 ; Upper stretch 4 (1000)
(V-LIN CORRECTION)
Vertical S Correction . .
(V-S CORRECTION) 000 ' Reverse S MAX 111 ' s MAX 3 (000)
Horizontal Amplitude I I Center
(HORIZONTAL SIZE) 000000 ' MAX 111111 ' MIN 6 (100000)
E/W Parabola Correction I I Center
(E/W PARABOLA) 00000 ' MIN 11111 ' MAX 5 (10000)
ENV Corner Correction 0000 ; Vertical 1111 ; Vertical 4 (0000)
(E/W CORNER) expansion compression
E/W Trapezium Correction 0000 ; Expansion 1111 ; Expansion 4 Center
(E/W TRAPEZIUM) upward downward (1000)
Color y Correction (COL-y) 0 ; ON 1 ; OFF 1 ((33:
Y Mute (Y MUTE) 0 ; OFF 1 ; ON 1 (1)
RGB y Correction (RGB-y) 0 ; OFF 1 ; ON 1 (0)
DL Mode Switching I I Through
(DL-MODE) 0 ' Through 1 ' ON 1 (0)
00 , ACB OFF&S/H LOW
ACB Mode Switching 01 , ACB OFF(Bus control) 2 S/H LOW
(ACB-MODE) 10 ; ACB ON &l-DET normal (00)
11 ;ACB ON&l-DETX3
23:22:33” Amplitude 00 ; NTSC STD 01 ; DVD STD 2 TSB STD
(RY/GY PHASE/GAIN) 10 ; NTSC (T) 11 ; A-TV STD (10)
Vertical Blanking Start
Phase 00000 ; Vth (Hi) 11111 ;Vth (Lo) 5 (00000)
(V-BLK START PHASE)
Vertical Blanking Stop I . .
Phase (V-BLK STOP PHASE) 00000 ' Vth (Lo) 11111 ;Vth (Hi) 5 (00000)
. 0000000 ; +60deg 1111111 ; -40deg Center
Base Band Tint *1000000(Center) :+6deg 7 (1000000)
V Centering 0 ; Interlocking .E/W trapef.ium correction Non-
. (E/W trapezium correction : 1'12.S%) . .
DAC Output switch . . . . 1 interlocking
(V Centering DAC SW) 1 ; Non-interlocking E/W trapezium correction (1)
(E/W trapezium correction : i4.5%)
READ MODE
Slave address : 89H
D7 D6 D5 D4 D3 D2 D1 D0
PONRES Y-IN RGB-OUT H-OUT V-OUT EW-OUT COLOR ED2
2000-04-10 15/104
TOSHIBA TA1310AN
ITEM DATA
Power On Reset (PORES) 0 ; Normal 1 ; Resister preset
Color Mode (COLOR) 0 , B/W 1 , NTSC
Self Diagnosis Result
Output
(RGB-OUT/Y-lN/H-OUT 0 ' NG 1 ' O
/V-OUT/E-W OUT/UV-IN)
ED2 Indentification 0 , non-ED2 1 , ED2
" BUS COMMUNICATIONS, RECEIVE METHOD
Start and stop condition
Start condition Stop condition
Bit transfer
SDA can not change. SDA can change.
Acknowledgement
SDA from s'-) I l - /isitsoruyg'oestohigh
' I Bit9onl oestohiahim ed e
transmitter l I - I n y g lg I p anc
SDA from receiver} l High impedance 1cfi-t9"oniy goes to low impedance
SCL from master s N I 1 M
Data receive format
I S l Slave address l 1 l A l Receive data 1 l A l Receive data 2 l A l P I
f 7 bits 1 8 bits
MSB MSB
When data are received, the master transmitter changes to a receiver immediately after the first
acknowledgement and the slave receiver changes to a transmitter.
The master always creates the stop condition.
Details are provided in the Philips " specifications.
2000-04-10 16/104
TOSHIBA TA1310AN
Option data transmit format
S Slave address 0 A 1 Subaddress A Transmit .. Transmit A P
data 1 data n
1 7 bits f 7 bits f 8 bits l 8 bits
MSB MSB MSB MSB
In the above method, the subaddresses are automatically incremented from the specified subaddress
and data are set.
Purchase of TOSHIBA " components conveys license under the Philips " patent Rights to use these
components in an " system, provided that the system conforms to the " standard specification as
defined by Philips.
MAXIMUM RATINGS (Ta = 25°C)
CHARACTERISTICS SYMBOL RATING UNIT
Power Supply Voltage (5 V/9 V) VCCmax 7/ 12 V
Input Signal Voltage (5V/9V) einmax 5/9 Vp-p
Power Dissipation (Note) PD 1920 mW
Power Dissipation Reduction Rate 1/Qja 15.4 mW/°C
Operating Temperature Topr -20--65 ''C
Storage Temperature Tstg - 55--150 ''C
(Note) : See the figure below.
POWER DISSIPATION PD (mW)
Fig. Temperature reduction curve for power dissipation
Ta (°C)
17/104
TOSHIBA TA1310AN
RECOMMENDED OPERATING POWER SUPPLY VOLTAGE
ITEM DATA AND CONDITIONS MIN TYP. MAX UNIT
Pin 16, Pin 37 8.7 9.0 9.3
Power Supply Voltage Pin 51 4.8 5.0 5.2 V
100% white, including
Pin 54 Y Input Signal Level synchronization 0.9 1.0 1.1 Vp-p
Pin 45 Chroma Input Signal TOF : off, burst level 100 300 400 mV
Level TOF : on, burst level 100 300 400 p-p
. . 100% white, including
Pin 38 Sync Signal Input Level synchronization 0.9 1.0 1.1 Vp-p
(Note) : Be sure to design the power supply so that when the power is Off, DEF VCC is
below 1.9 V.
ELECTRICAL CHARACTERISTICS
(VCC = 5V/9V, DEF VCC = 9V, Ta = 25°C , 3°C, unless otherwise specified)
Current dissipation
TEST CURRENT DISSIPATION
PIN NAME SYMBOL CIR- UNIT REMARKS
CUIT MIN TYP. MAX
5V Vcc Icc1 - 32.50 38.34 45.30 mA -
9V Vcc Iccz - 48.54 57.44 67.78 mA -
DEF VCC Iccg - 19.70 23.31 27.50 mA -
2000-04-10 18/104
TOSHIBA TA1310AN
DC CHARACTERISTICS
Pin voltage
PIN PIN NAME Sggi' MIN TYP. MAX UNIT PIN PIN NAME 121- MIN TYP. MAX UNIT
1 VSM out VI 4.10 4.30 4.50 29 SCL v29 4.90 5.00 -
2 GND1 v2 - 0.00 - 30 SDA v30 4.90 5.00 -
3 R in v3 3.40 3.70 4.00 31 D. GND GND2 v31 - 0.00 -
4 G in v4 3.40 3.70 4.00 32 HD out v32 0.15 0.20 0.25
5 B in vs 3.40 3.70 4.00 33 VD out v33 4.90 5.00 5.10
6 Ys/Ym in v6 - 0.00 0.20 34 FBP in v34 1.30 1.60 1.90
7 OSD R in v7 5.00 5.50 6.00 35 H out v35 1.50 1.80 2.10
8 OSD G in vs 5.00 5.50 6.00 36 Sync out v35 8.80 9.00 -
9 OSD B in v9 5.00 5.50 6.00 37 DEF Vcc v37 - 9.00 -
10 OSD Ys in v10 - 0.00 0.20 38 Sync in v38 2.80 3.00 3.20
11 ABL in VII 5.70 6.00 6.30 39 v Sep v39 6.00 6.40 6.80
12 VK out v12 4.85 5.00 - 40 AFC1 v40 7.20 7.50 7.80
13 R out v13 1.20 1.60 2.00 41 32fh VCO v41 5.70 5.90 6.10
14 G out V14 1.20 1.60 2.00 V 42 Curve correction V42 4.60 4.80 5.00 V
15 B out v15 1.20 1.60 2.00 43 DL out v43 0.30 0.80 1.00
16 Vcc (9V) v15 - 9.00 - 44 GND3 v44 - 0.00 -
17 R Filter v17 2.1 2.5 2.9 45 Chroma in v45 1.59 1.77 1.95
18 G Filter v18 2.1 2.5 2.9 46 APC v45 1.39 1.72 2.05
19 B Filter v19 2.1 2.5 2.9 47 B-Y out v47 1.91 2.22 2.53
20 IK in v20 0.95 1.00 1.05 48 R-Y out V48 1.91 2.22 2.53
21 VCentering v21 2.20 2.30 2.40 49 X'tal v49 3.80 4.00 4.20
22 EW FB v22 3.90 4.30 4.70 50 cw out v50 3.00 3.50 4.00
23 EW out v23 0.60 0.70 0.80 51 Vcc (5V) v51 - 5.00 -
24 v out v24 0.60 0.70 0.80 52 R-Y in v52 2.85 3.00 3.15
25 v NFB v25 4.60 5.00 5.40 53 B-Y in v53 2.85 3.00 3.15
26 v AGC v26 1.80 2.00 2.20 54 Y in v54 3.50 3.65 3.90
27 v RAMP v27 4.00 4.20 4.40 55 Black peak detect v55 3.20 3.70 3.80
28 EHT, V In V28 4.80 4.90 5.00 56 DC "?t.oration V56 2.90 3.00 3.10
correction
2000-04-10 19/104
TOSHIBA TA1310AN
AC CHARACTERISTICS
Video stage
TEST TEST
CHARACTERISTICS SYMBOL CIR- CONDITIONS MIN TYP. MAX UNIT
#54 Voltage
V54 - 3.5 3.65 3.9
(Y Input Pedestal Clamp Voltage) (Note P1) V
#55 Voltage 1/55 - (Note P2) 3.2 3.7 3.8 v
#56 Voltage V56 - (Note P3) 2.93 3.03 3.13 V
#1 Voltage VI - (Note P4) 4.1 4.25 4.4 v
Y Input Pedestal Clamp Error AVPCO -
-7 1'0 7
Voltage AVPC1 - (Note P5) + mV
Y Input Pedestal Clamp Pulse TCLI - 2.8 2.9 3.0
Phase TCL2 - (Note P6) 4.8 4.9 5.0 ps
Y Input Dynamic Range DR54 - (Note P7) 1.0 1.25 1.4 Vp-p
#56 Output Impedance 256 - (Note P8) 4 5 6 k0
Ilac5 Stretch111g Amplifier GBS - (Note P9) 1.3 1.4 1.5 (Times)
Maximum Gain
Black Level Compensation BLC - (Note P10) 6 7 8 (IRE)
Black Peak Detection Level AVBP - (Note P11) -15 0 + 15 mV
Bl k St t hi St rt P . t P3001 - (N t P12) 34 36 42 (IRE)
ac rec mg a om PB111 - oe 51 54 61
DC Restoration Rate GDTC - 1.45 1.55 1.65 .
Compensation Amp. Gain GDTR - (Note P13) 1.3 1.4 1.5 (Times)
SCDC -
- . . - OK - -
Self Diagnosis Y IN SCAC - (Note P14)
Y Mute GYM - (Note P15) -CX) -50 -45 dB
Sharpness Peak Frequency FAP - (Note P16) 3.35 4.2 5.05 MHz
Shar n C ntr I Ran GMAX - (N t P17) 8 11 14 dB
p ess o o ge GMIN - o e -12 -7.5 -3
Sharpness. f.ontrol Center GCEN - (Note P18) 2 5 8 dB
Characteristics
(ter" Y IN and R OUT Delay TY - (Note P19) 120 150 180 ns
VSM Peak Frequency FVSM - (Note P20) 3 4 5 MHz
VSM G . GVSMO - (N t P21) 9 11 13 dB
mn GVSM1 - o e -CC) -30 -20
. VVM10 - 0.7 0.8 0.9
VSM Muting Threshold Voltage VVM6 - (Note P22) 2.15 2.25 2.35 V
THM1 -
VSM High Speed Muting Response THM2 -
0 50 100
Time THM3 - (Note P23) + + ns
THM4 -
TVM24 - 64 80 94
VSM Phase TVMFP - (Note P24) 59 73 87 ns
TVM2T - 64 80 94
(Note 1) : For testing, see the picture sharpness test circuit diagrams.
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
2000-04-10 20/104
TOSHIBA TA1310AN
Chroma stage
TEST TEST
CHARACTERISTICS SYMBOL CIR- CONDITIONS MIN TYP. MAX UNIT
va10 - 93.5 110 127
va30 - 272 320 368 V
ACC Characteristic va300 - (Note C1) 276 325 374 m p-p
va600 - 276 325 374
A - 0.80 1.00 1.10 -
. vi? - 276 325 374
Color Difference Output Level vR - (Note C2) 276 325 374 ml/p-p
folorDif,ference Output Relative vRB - (Note C3) 0.90 1.00 1.10 -
Amplitude
Color Difference Output (?Bcnt - 3.0 6.0 11.0
Demodulation Angle (?Rcnt - ( ote C ) 91.0 94.0 99.0
Color Difference Output Relative 6R8 - (Note C5) 85.0 89.0 91.0 0
HBmax - -35.0 -40.0 -46.5
Color Difference Output Tint 68min - (Note C6) 35.0 38.0 44.0 o
Adjustment Characteristics t?Rmax - -35.0 -40.0 -46.5
BRmin - 35.0 38.0 46.0
BVp - 5.00 8.00 11.00
Supply Voltage Dependence of RVp - 5.00 8.00 11.00 0
Color Difference Output BVn - (Note C7) -11.00 -8.00 -5.00 hl
RVn - -11.00 - 8.00 - 5.00
. . . . . . VCB - 3.00 4.10 6.00
Identification Sensitivity vBC - (Note C8) 3.00 4.40 6.00 mVp-p
. . . bCB - - 0 -
Bus Read Identification bBC - (Note C9) - 1 - -
Color Difference Output Voltage vBH - - 0 4.00
Difference in 1H Period vRH - (Note C10) - o 4.00 mVP'P
Color Difference Output Voltage vBG - - 0 2.00
Difference Every 1H Period vRG - (Note C11) - o 2.00 ml/p-p
Color Difference Output DC VB - 1.91 2.22 2.53
Voltage VR - (Note C12) 1.91 2.22 2.53 V
Difference between DC Voltage
Axes of Color Difference Output VRB - (Note C13) 0.1 0 +0.1 V
X'tal Free-Run Frequency Xf - (Note C14) 3.579345 3.579545 3.579745 MHz
APC Frequency Control Sensitivity Jef - (Note C15) 0.45 0.90 1.20 Iz,
fh + - + 250 + 500 + 2000
fh - - - 250 - 500 - 2000
APC Pull-ln/Hold Range fp+ - (Note C16) +250 +500 +2000 Hz
fp - - - 250 - 500 - 2000
. . vBNo - - 2.0 4.00
Residual Carrier Level vRNo - (Note C17) - 2.0 4.00 mVp-p
. . . vBHN - - 2.0 4.0
Residual Higher Harmonics Level vRHN - (Note C18) - 2.0 4.0 mVp-p
2000-04-10 21/104
TOSHIBA TA1310AN
TEST TEST
CHARACTERISTICS SYMBOL fllr, CONDITIONS MIN TYP. MAX UNIT
GBL - 17.5 21.0 24.5
. . GBH - 21.5 25.0 28.5
TOF-BPF Characteristic GTL - (Note C19) 14.0 17.5 21.0 dB
GTH - 21.5 25.0 28.5
CW Output Amplitude vCW - (Note C20) 420 700 980 mVp-p
Color difference stage
TEST TEST
CHARACTERISTICS SYMBOL fllr, CONDITIONS MIN TYP. MAX UNIT
Color Difference In ut Clam VRY - 2.85 3.00 3.15
Voltage p p VBY - (Note A1) 2.85 3.00 3.15 V
Color Difference In ut/Out ut DLRY - 115 150 185
Delay Time p p DLBY - (Note A2) 115 150 185 ns
Unicolor Adiustment uR - - 17 - 19 - 21
Characteristilcs uB - (Note A3) - 17 - 19 - 21 dB
cRmax - 6.5 8.0 9.5
. . . cRmin - - - -20
Color Adjustment Characteristics cBmax - (Note A4) 6.5 8.0 9.5 dB
cBmin - - - - 20
vRHo - - 5.5 - 6 - 6.5
RGB oytryt. Half-Tone vGHo - (Note A5) -5.5 -6 -6.5 dB
Characteristics
vBHo - - 5.5 - 6 - 6.5
vRSTD - 0.64 1.13 0.87
vGSTD - 0.39 0.50 0.53
VBSTD - 1.14 1.35 1.56
VRDVD - 0.90 1.07 1.23
VGDVD - 0.51 0.61 0.70
. vBDVD - 1.14 1.35 1.56
RGB Output Amplitude vRTSB - (Note A6) 0.78 0.92 1.06 vp_p
VGTSB - 0.34 0.41 0.47
vBTSB - 1.14 1.35 1.56
VRDTV - 0.98 1.13 1.34
VGDTV - 0.34 0.41 0.47
vBDTV - 1.14 1.35 1.56
VRBSTD - 0.78 0.87 0.96
vGBSTD - 0.31 0.35 0.39
VRBDVD - 0.72 0.80 0.88
. . VGBDVD - 0.37 0.42 0.47
RGB Output Relative Amplitude vRBTSB - (Note A7) 0.62 0.69 0.76 -
VGBTSB - 0.25 0.28 0.31
vRBDTV - 0.78 0.87 0.96
vGBDTV - 0.24 0.27 0.30
2000-04-10 22/104
TOSHIBA TA1310AN
TEST TEST
CHARACTERISTICS SYMBOL fllr, CONDITIONS MIN TYP. MAX UNIT
BRSTD - 86.0 90 94
BGSTD - 232.0 236 240.0
BBSTD - -4 0 4
6RDVD - 86.0 90 94.0
BGDVD - 240 244 248
. 6BDVD - -4 0 4 o
RGB Output Demodulation Angle BRTSB - (Note A8) 88.0 92 96.0
f?GTSB - 236.0 240 244.0
BBTSB - -4 0 4
6RDTV - 86.0 90 94.0
t9GDTV - 240.0 244 248.0
BBDTV - -4 0 4
BRBSTD - 92 96 100
6GBSTD - 236 240 244
6RBDVD - 88 92 96
RGB Output Relative Phase f?GBDVD - (Note A9) 240 244 248 o
HRBTSB - 90 94 98
(9GBTSB - 235 239 243
HRBDTV - 103 107 111
HGBDTV - 239 243 247
. XEIR - - - 50 - 45
Color Difference EXT-9INT XEIG - (Note A11) - -50 -45 dB
Crosstalk
XEIB - - - 50 - 45
. XIER - - - 50 - 45
Color Difference INT-9EXT XIEG - (Note A12) - -50 -45 dB
Crosstalk
XIEB - - - 50 - 45
Color y Characteristic Cy sp - (Note A13) 1.80 2.07 2.20 V
Y stage
TEST TEST
CHARACTERISTICS SYMBOL fllr, CONDITIONS MIN TYP. MAX UNIT
Sync lnput--DL Output AC Gain Gyoff - (Note Y1) -0.30 -0.20 0.01 dB
Gyon - -0.45 -0.35 0.01
S nc In ut--DL Out ut Fre uenc Gfyoff -0.20 0.00 0.20
Gyain p p q y Gfyon - (Note Y2) -3.00 -1.60 0.20 dB
s nc In ut-DL Out ut D namic VDoff 1.30 1.60 -
Rimge p p y VDon - (Note Y3) 1.30 1.60 - Vp-p
Sync Inpu-tjDL Output Transfer TYDL - (Note Y4) 300 350 410 ns
Characteristics
2000-04-10 23/104
TOSHIBA TA1310AN
Text stage
TEST TEST
CHARACTERISTICS SYMBOL CIR- CONDITIONS MIN TYP. MAX UNIT
GR - 3.2 3.80 4.55
AC Gain GG - (Note T1) 3.2 3.80 4.55 Times
GB - 3.2 3.80 4.55
GfR - - -3.0 -6.0
Frequency Characteristics GfG - (Note T2) - -3.0 -6.0 dB
GfB - - -3.0 -6.0
vuMAX - 0.59 0.74 0.88
. . . . quNT - 0.31 0.39 0.47 V -
Unicolor Adjustment Characteristic vuMlN - (Note T3) 0.06 0.08 0.10 p p
Avu - 17 18.5 20 dB
. . VbrMAX - 4.3 4.6 4.9
'l22,hatcntgi'stldjustment VbrCNT - (Note T4) 3.3 3.6 3.9 v
VbrMIN - 2.3 2.6 2.9
Brightness Control Sensitivity Gbr - (Note T5) 14.2 16.3 18.7 mV
White Peak Slice Level VWPS - (Note T6) 2.600 2.825 3.100 Vp-p
VBPSR -
Black Peak Slice Level VBPSG - (Note T7) 1.95 2.15 2.35 V
VBPSB -
TDCR -
DC Restoration TDCG - (Note T8) - 0.0 50 mV
TDCB -
RGB Output S/N N14 - (Note T9) - -50 -45 dB
. |#13 -
'ly Output Emitter-Follower |#14 - (Note T10) 1.1 1.5 1.9 mA
Drive Current
|#15 -
At13 -
RGB f.oytpyt Temperature nt14 - (Note T11) -2.0 0.0 2.0 mV/°C
Coefficient
At15 -
Half-Tone Characteristics GHT - (Note T12) 0.45 0.5 0.55 Times
Half-Tone ON Voltage VHT - (Note T13) 0.6 0.8 1.0 V
V-BLK Pulse Output Level VVG - (Note T14) 0.5 1.0 1.5 V
H-BLK Pulse Output Level VHG - (Note T15) 0.5 1.0 1.5 V
tdONR -
tdONG - - 0.0 0.3
Blanking Pulse Delay Time $82: I (Note T16) ps
tdOFFG - - 0.0 0.3
tdOFFB -
2000-04-10 24/104
TOSHIBA TA1310AN
TEST TEST
CHARACTERISTICS SYMBOL fllr, CONDITIONS MIN TYP. MAX UNIT
Avsu + - 1.8 2.3 2.8
Sub-Contrast Control Range Avsu - - (Note T17) -3.0 -3.5 -4.0 dB
v#13 -
RGB Output Voltage V#14 - (Note T18) 2.35 2.6 2.85 v
v#15 -
CUT + R -
CUT+G - 0.45 0.5 0.55
Cut-Off Voltage Control Range 23::E I (Note T19) V
CUT-G - -0.45 -0.5 -0.55
CUT - B -
DRG + - 2.35 2.85 3.35
. . DRG - - - 4.25 - 5.0 - 5.75
Drive Adjustment Range DRB + - (Note T20) 2.35 2.85 3.35 dB
DRB- - -4.25 -5.0 -5.75
#11 Input Impedance Zin11 - (Note T21) 24 30 36 k0
. . ACL1 - -1.5 -3.5 -5.5
ACL Characteristic ACL2 - (Note T22) -12 -15 - 18 dB
ABLP1 - 0.04 -0.01 -0.06
. ABLP2 - -0.09 -0.14 -0.19
ABL Point ABLP3 - (Note T23) -0.24 -0.29 -0.34 V
ABLP4 - -0.37 -0.42 -0.47
ABLG1 - -0.119 -0.095 -0.072
. ABLG2 - -0.400 -0.320 -0.240
ABL Gain ABLG3 - (Note T24) -o.750 -O.600 -0.450 V
ABLG4 - -0.925 -o.740 -0.555
BLK Off Mode BLK - (Note T25) - oeer- - -
GTXR -
Analog RGB Gain GTXG - (Note T26) 4.2 5.0 5.0 Times
GTXB -
GfTXR -
"t,1teteR,ieicfequency GfTXG - (Note T27) - - 1.0 - 3.0 dB
GfTXB -
GR13 -
Analog RGB Input Dynamic Lange GR14 - (Note T28) 0.47 0.55 - Vp-p
GR15 -
. . VTXMAXR -
"ee"' RGB White Peak Slice VTXMAXG - (Note T29) 3.5 3.8 4.1 Vp-p
VTXMAXB -
. . VTXMINR -
6;ij RGB Black Peak Limiter VTXMING - (Note T30) 1.9 2.1 2.3 v
VTXMINB -
2000-04-10 25/104
TOSHIBA
TA1310AN
CHARACTERISTICS
SYMBOL
CONDITIONS
MIN TYP. MAX UNIT
Analog RGB Contrast Adjustment
Characteristics
vuTXR1
vuTXG1
vuTXB1
vuTXR2
vuTXG2
vuTXB2
vuTXR3
vuTXG3
vuTXB3
AvuTXR
AvuTXG
AvuTXB
(Note T31)
0.85 1.0 1.2
0.50 0.59 0.71 Vp-p
17.0 18.5 20 dB
Analog RGB Brightness
Adjustment Characteristics
VbrTX1R
VbrTX1G
VbrTX1B
VbrTX2R
1/brTX2G
1/brTX2B
VbrTX3R
VbrTX3G
VbrTX3B
(Note T32)
3.3 3.6 3.9
2.8 3.1 3.4 V
2.2 2.5 2.8
Analog RGB Mode On Voltage
VTXO N
(Note T33)
2.0 2.25 2.5 V
Analog RGB Mode Transfer
Characteristics
z'RYSG
tPRYSR
tPRYSG
tPRYSB
AtPRYS
z'FYSG
AtPFYS
(Note T34)
- 25 100
- 30 100
- 10 100
- 25 100
Crosstalk from Video to Analog
I/v-aaa
I/v-oats
I/v-yall
(Note T35)
Crosstalk from Analog RGB to
Va-9vR
Va-ov"
(Note T36)
2000-04-10 26/104
TOSHIBA TA1310AN
TEST TEST
CHARACTERISTICS SYMBOL fllr, CONDITIONS MIN TYP. MAX UNIT
GOSDR -
Analog OSD Gain GOSDG - (Note T37) 1.8 2.0 2.2 (Times)
GOSDB -
A I OSD F GfOSDR -
c::r:§teristics requency GfOSDG - (Note T38) - -1.0 -3.0 dB
GfOSDB -
VOSD1R -
VOSD1G - 2.25 2.5 2.75
VOSD1B -
VOSD2R -
Analog OSD Output Level VOSDZG - (Note T39) 1.98 2.20 2.42 V
VOSDZB -
VOSD3R -
VOSD3G - 5.0 5.5 6.0
VOSD3B -
Analog OSD Mode On Voltage VOSDON - (Note T40) 2.00 2.25 2.50 V
TROSDYSR -
rROSDYSG - - 20 100
rROSDYSB -
tPROSDYSR -
tPROSDYSG - - 30 100
tPROSDYSB -
Analo OSD Mode Transfer AtPROSDYS - - O 20
Charagteristic rFOSDYSR - (Note T41) ns
rFOSDYSG - - 15 100
rFOSDYSB -
tPFOSDYSR -
tPFOSDYSG - - 30 100
tPFOSDYSB -
AtPFOSDYS - - 0 20
. . Oper-
RGB Output Self-Diagnosis SCRGB - (Note T42) - ating - -
BACBR - - 1 -
BACBG - - 2 - (H)
. HACBB - - 3 -
ACB Input Pulse Phase, Amplitude VACBR - (Note T43) 0.200 0.250 0.300
VACBG - 0.200 0.250 0.300 Vp-p
VACBB - 0.200 0.250 0.300
2000-04-10 27/104
TOSHIBA TA1310AN
TEST TEST
CHARACTERISTICS SYMBOL fllr, CONDITIONS MIN TYP. MAX UNIT
l17a - 0.08 0.1 0.125
I17b - 0.08 0.1 0.125
l17c - 0.8 1.0 1.3
I17d - 2.0 2.5 3.2
l18a - 0.08 0.1 0.125
I18b - 0.08 0.1 0.125
ACB Clamp Current l18c - (Note T44) 0.8 1.0 1.3 mA
I18d - 2.0 2.5 3.2
I19a - 0.08 0.1 0.125
I19b - 0.08 0.1 0.125
I19c - 0.8 1.0 1.3
I19d - 2.0 2.5 3.2
IKR - 0.8 1.0 1.2
IK Input Amplitude IKG - (Note T45) 0.8 1.0 1.2 Vp-p
IKB - 0.8 1.0 1.2
y1R - 40 50 60
y2R - 60 70 80 (IRE)
A1R - 0.75 1.5 2.25
MR - -0.75 0.0 0.75 dB
A3R - -2.55 -3.3 -4.05
y1G - 40 50 60
y2G - 60 70 80 (IRE)
RGB y Correction Characteristics A1G - (Note T46) 0.75 1.5 2.25
MG - -0.75 0.0 0.75 dB
A36 - -2.55 -3.3 -4.05
y1B - 40 50 60
y2B - 60 70 80 (IRE)
A1B - 0.75 1.5 2.25
MB - -0.75 0.0 0.75 dB
433 - -2.55 -3.3 -4.05
VKA - 1.90 2.00 2.10 V
VK Output Characteristic VK1 - (Note T47) 25.0 35.00 45.0 p-p
VK2 - 60.0 70.00 80.0 (IRE)
ACB Protector Circuit C) eration ACBPR - - - - -
Check 1 p ACBPG - (Note T48) - - - -
ACB Protector Circuit 0 eration ACBBRAR - - - - -
Check 2 p ACBBRAG - (Note T49) - - - -
"lfdcl'"j"ector Circuit Operation ACBBRLO - (Note T50) - - - -
2000-04-10 28/104
TOSHIBA TA1310AN
TEST TEST
CHARACTERISTICS SYMBOL CIR- CONDITIONS MIN TYP. MAX UNIT
ANG RMIN - 47.0 53.0 59.0
Base Band TINT Adjustment ANG BMIN - (Note T51) 47.0 53.0 59.0 0
Characteristics ANG RMAX - - 51.0 -45.0 -39.0
ANG BMAX - -51.0 -45.0 -39.0
Basgpand TINT Adjustment BUS BO - (Note T52) c2 C6 CA HEX
Position
2000-04-10 29/104
TOSHIBA TA1310AN
Deflection stage
TEST TEST
CHARACTERISTICS SYMBOL CIR- MIN TYP. MAX UNIT
CUIT CONDITIONS
Sync. Separation Input Sensitivity
I - 12 20 30
Current lN38 (Note D1) [L(A
V Separation Filter Pin Source
I - 3.2 4.2 5.2
Current 0UT39 (Note D2) PA
V Separation Level VSEp - (Note D3) 5.0 5.5 6.0 V
. I - 210 300 420
H AFC Phase Detection Current DET (Note D4) PA
Ratio AIDET - -5 0 +5 %
Phase Detection Stop Period TCO40 - (Note D5) - 1 - (H)
32* fH VCO Oscillation Start
v - 3.7 4.0 4.3
Voltage VCO (Note D6) V
VH0N35 - 4.7 5.0 5.3 v
Horizontal Output Start Voltage VBUS HON - (Note D7) - 1 -
VBUS HOFF - - 0 -
Horizontal Output Pulse Duty TH35 - (Note D8) 38.5 40.5 42.5 %
Phase Detection Stop Mode fFR - (Note D9) 15585 15734 15885 Hz
Horizontal Output Free-Run fHO - (Note D10) 15585 15734 15885 Hz
Frequency
. . . f - 14700 15000 15300
Horizontal Oscillation Frequency HMIN (Note D11) Hz
Range fHMAX - 16500 16700 16900
Horizontal Oscillation Control
- 250 300 350 .
Sensitivity /3H (Note D12) Hz/O IV
. VH35 - 4.2 4.6 5.0
Horizontal Output Voltage VL35 - (Note D13) - 0.15 0.3 V
Power Supply Voltage Dependence
of Horizontal Oscillation AfHV - (Note D14) -20 0 +20 Hz/V
Frequency
Temperature Dependence of
nf - - 60 70
Horizontal Oscillation Frequency HT (Note D15) Hz
. SpH1 - 2.3 2.5 2.7
Horizontal Sync. Phase SPH2 - (Note D16) 0.2 0.3 0.4 ,us
Horizontal Picture Phase
AH - 5.5 6.0 6.5
Adjustment Range SFT (Note D17) ps
Horizontal Blanking Pulse VHBLK1 - 4.7 5.0 5.3
Threshold VHBLK2 - (Note D18) 0.8 1.1 1.4 V
Curve Correction Characteristic AH42 - (Note D19) 2.3 2.5 2.7 ps
H Cycle Black Peak Detection HBPs - 7.5 8.0 8.5
Disable Pulse HBPW - (Note D20) 13.0 13.5 14.0 ps
External Black Peak Detection
BP - 0.9 1.1 1.3
Disable Pulse Threshold V32 (Note Dill) V
2000-04-10 30/104
TOSHIBA TA1310AN
TEST TEST
CHARACTERISTICS SYMBOL CIR- MIN TYP. MAX UNIT
CUIT CONDITIONS
Clamp Pulse Start Phase CPS - (Note D22) 2.8 3.0 3.2 pe;
Clamp Pulse Width CPW - (Note D22) 5.6 5.8 6.0 ps
HD Output Start Phase HDs - (Note D23) 0.7 0.9 1.1 ps
HD Output Pulse Width HDW - (Note D23) 0.7 0.9 1.1 [as
HD Output Amplitude VHD - (Note D23) 4.7 5.0 5.3 v
Gate Pulse Start Phase GPS - (Note D24) 2.7 2.9 3.1 ps
Gate Pulse Width GPW - (Note D24) 1.8 2.0 2.2 ps
Gate Pulse V Mask Period TCO34 - (Note D25) - , - (H)
Sync. Out Low Level VSY - (Note D26) 0.0 0.3 0.5 V
Vertical Output Oscillation Start
Voltage VON - (Note D27) 4.1 4.4 4.7
Vertical Free-Run Frequency fvo - (Note D28) - 53 - Hz
. VVH - 4.9 5.2 5.5
Vertical Output Voltage VVL - (Note D29) - 0 0.3 V
Service Mode Switching VDNO - (Note D30) 3.1 3.4 3.7 V
. pr - - 225 -
Vertical PuII-In Range fPH - (Note D31) - 297 - (H)
Vertical Frequency Forced 263H fv1 - (Note D32) - 263 - (H)
Vertical Frequency Forced 262.5H fi/2 - (Note D32) - 262.5 - (H)
Vertical Blanking Off Mode VOFF - (Note D33) - Check - -
. . TD - 44 46 48
Vertical Output Pulse Width (Note D34) ps
TW - - 8 -
. . I/RSI -
RGB Output Vertical Blanking
Pulse Start Phase V651 - (Note D35) 44 46 48 pt;
V351 -
RGB o tp t Verti al Blankin VRS2 - - 22 -
u u IC I g
Pulse Stop Phase 1/GS2 - (Note D35) - 22 - (H)
VB52 - - 22 -
V Cycle Black Peak Detection VBP (N t D36) s (H)
Disable Pulse (Normal) NORMAL o e 28
V Cycle Black Peak Detection VBP (N t D37) , (H)
Disable Pulse (Zoom) ZOOM o e 56
2000-04-10 31/104
TOSHIBA TA1310AN
Deflection correction stage
TEST TEST
CHARACTERISTICS SYMBOL CIR- CONDITIONS MIN TYP. MAX UNIT
Vertical Ramp Amplitude Vp27 - (Note G1) 1.50 1.67 1.83 Vp-p
Vertical Amplification GV - (Note G2) 22 25 28 dB
Vertical Amp Maximum Output
V - 2.5 3.0 3.5
Voltage H24 (Note G3) V
Vertical Amp Minimum Output
V - - 0.0 0.3
Voltage L24 (Note G4) V
Vertical Amp Maximum Output
I - 11 14 17
Current MAX1 (Note GS) mA
Vertical NF Sawtooth Wave
V - 1.50 1.67 1.83 -
Amplitude P25 (Note G6) VD p
Vertical Amplitude Range VpH - (Note G7) :36 :40 :44 %
1ertifal Linearity Correction Vg - (Note G8) :12 LF15 i 18 %
Maximum Value
Vertical S Correction Maximum VS - (Note G9) 20 25 30 %
Vertical NF Center Voltage Vc - (Note G10) 4.8 5.0 5.2 V
Vertical NF DC Change VDC - (Note G11) i 100 i 120 i140 mV
Vertical Amplitude EHT Correction VEHT - (Note G12) 8 9 10 %
E-W NF Maximum DC Value
V - 5.3 5.8 6.3
(Picture Width) H22 (Note G13) V
E-W NF Minimum DC Value
V - 1.75 1.90 2.05
(Picture Width) L22 (Note G14) V
E-W NF Parabola Maximum Value
V - 2.1 2.5 2.9 -
(Parabola) PB (Note G15) Vp p
E-W NF Corner Correction (Corner) VCR - (Note G16) 1.0 1.2 1.4 Vp-p
Parabola Symmetry Correction VTR - (Note G17) $4.5 *5.5 $6.5 %
E-W Amp Maximum Output
I - 0.14 0.20 0.28
Current MAX2 (Note G18) mA
AGC Operating Current 1 VAGCO - (Note G19) 470 590 710 pzA
AGC Operating Current 2 VAGC1 - (Note G20) 100 130 160 PA
Vertical Guard Voltage VVG - (Note G21) 1.80 2.00 2.20 V
V EW - - 0 -
E/W Output Self-Diagnosis BUS OFF (Note G22) -
VBUS EWON - - 1 -
V V - - 0 -
V-Out Output Self-Diagnosis BUS OFF (Note G23) -
VBUS VON - - 1 -
Vertical Blanking Check VBLK1 VBLK2 - (Note G24) - Check - -
v21L - 0.20 0.25 0.30
V Centering DAC Output V21M - (Note G25) 2.20 2.30 2.35 V
V21H - 4.20 4.30 4.35
V NFB Pin Input Current I20 - (Note G26) - 10 900 nA
2000-04-10 32/104
2000-04-10 33/104
TEST CONDITIONS
Video stage
NOTE ITEM
(TEST CONDITIONS VCC = 9V/5 V, Ta = 25 i 3CC)
SW MODE
MEASUREMENT METHOD
#54 Voltage
P1 (Y Input Pedestal
Clamp Voltage)
Set the bus control data to the preset value.
Measure the #54 DC voltage V54.
P2 #55 Voltage
Set the bus control data to the preset value.
Measure the #55 DC voltage V55.
P3 #56 Voltage
Set the bus control data to the preset value.
Measure the #56 DC voltage V56.
P4 #1 Voltage
Set the bus control data to the preset value.
Measure the #1 DC voltage V1.
Y Input Pedestal
5 Clamp Error Voltage
Set the bus control data to the preset value.
Set SW54 to C (connect the Y input to AC-GND).
Measure #56 with an oscilloscope as shown in the diagram and calculate AVPC.
Calculate the voltage differences AVPC1 and AVPCO when the Y mute is on (1) and
off (0).
#56 (DC transfer JVPCO (1)
rate correction)
#34 (FE? input)
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control)
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA1310AN—33
TOSHIBA
TA1310AN
2000-04-10 34/104
NOTE ITEM
(TEST CONDITIONS VCC = 9V/5V, Ta = 25 i‘ 3°C)
SW MODE
MEASUREMENT METHOD
Y Input Pedestal
Clamp Pulse Phase
, Set the bus control data to the preset value.
Set SW54 to B (connect VCC (5 V) to the Y input via a 20-kQ resistor).
Measure #54 and #40 with an oscilloscope as shown in the diagram. Calculate TCL1
and TCL2.
I TCLZ
#54 (Y input) V
#40 (AFC l)
Y Input Dynamic
p7 Range
Set the bus control data to the preset value.
Set SW54 to C (connect the Y input to AC—GND).
Set the unicolor to the center (100000), the brightness to the center (1000000), RGB
cutoff to the center (10000000), the Y mute to OFF (0), and connect an external
power supply to #54.
Increase the supply voltage from V54 and measure #13 (ROUT).
' When the #13 voltage stops changing, substitute the supply voltage (V) in the
formula below and calculate DR54.
DR54 = V—V54
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA131OAN—34
TOSHIBA
TA1310AN
2000-04-10 35/104
(TEST CONDITIONS VCC = 9V/5V, Ta = 25 i‘ 3°C)
NOTE ITEM sw MODE
SW54 5W55 5W56
MEASUREMENT METHOD
#56 Output
C B OPEN
Impedance
Set the bus control data to the preset value.
Set SW54 to C (connect the Y input to AC-GND).
Connect the external power supply to #56 via ammeter A as shown in the diagram
below.
Adjust the power supply until the ammeter reads 0 amperes.
Measure the ammeter current 156 when the power supply is increased by 0.1V.
Calculate 256 from the following formula.
256 = 0.1[V] : I56 [A]
Mlcroammeter l
Black Stretching
P9 Amplifier Maximum A i OPEN
Gain A
i'm.‘ "t In: (uv)
3 Set the bus control data to the preset value.
: Set the black stretch start point to 001, turn the Y mute off (0), set SW54 to A, and
input a 500—kHz sine wave to TP54A.
Use #54 to adjust the signal amplitude to 0.1Vp_p.
Set SW55 to B (minimum gain) and measure the amplitude VA of #56.
3 Set SW55 to A (maximum gain) and measure the amplitude VB of #56.
, Calculate 635 from the following formula.
635 = VB VA
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA1310AN—35
TOSHIBA
TA1310AN
2000-04-10 36/104
NOTE ITEM SW MODE
(TEST CONDlTlONS VCC = 9V/5V, Ta = 25 i 3°C)
MEAS REMENT METHOD
5W54 5W55 SW56 U
Black Level
10 Compensat
J1 ,‘ Set the bus control data to the preset value.
{2; Set SW54 to C (connect the Y input to AC—GND), set SW55 to A (maximum gain),
turn the Y mute off (0), and turn the black level compensation on (set the black
stretch start point to 000).
(3: Observe #56, measure AV, and calculate the following formula.
BLC[(IRE)] = (AV[mV] : (0.7 X 103) [mV])X100[(|RE)]
. C A OPEN
Ion .................
AV [mVI
Picture period
Black Peak
P11 Level
I'11 Set the bus control data to the preset value.
("2‘ Turn the Y mute off (0) and connect #54 to an external power supply (PS).
(3) Turn the black level correction on (set the black stretch start point to 000).
C C OPEN (4} Increase the PS from 3V and measure the voltage VBP of #56 where the DC level 01
the picture period of #55 shifts from high to low.
x5.) Calculate AVBP from the following formula.
Detection
AVBP = VBP — v55
(Note 1)
(Note 2)
TA1310AN—36
When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Ensure the composite signal is always input to pin 38 (SYNC IN).
TOSHIBA
TA1310AN
2000-04-10 37/104
(TEST CONDITIONS VCC = 9V/5V, Ta = 25 i 3°C)
NOTE ITEM SW MODE
SW54 SW55
MEASUREMENT METHOD
Black Stretching Sta rt
P12 Point
(1) Set the bus control data to the preset value.
‘72,) Set SW54 to C (connect the Y input to AC-GND), set SW55 to 8 (minimum gain),
turn the Y mute off (0), and set the black stretch start point to 001.
"3; Connect #54 to an external power supply (PS), increase the voltage from V54, and
plot the resulting change in voltage 51 of #56.
4 Next, set SW55 to A (maximum gain). Then, increase the voltage from V54 as in 53,“
above and plot the resulting change in voltage 52 of #56.
"5) Now set the black stretch point to 111 and plot 53 as in f3, above.
\6‘ Use the diagram below to calculate the intersection V3001 of S1 and 52, and the
intersection V3111 of S1 and 53. Use the following formals to calculate P3001 and
P3111, and calculate P3001 and P3111 from the formulas below.
P3001 [(IRE)] ((V3001 [V] — V55 [V] + 0.7 [V]) X 100 [(IRE)]
P3111[(IRE)] ((VB1111V1- V56 [V] + 0.7 M) X 1001(IRE)]
V3111' ./
(black stretch 001)
(black Stretch 111)
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA131 OAN ~37
TOSHIBA
TA1310AN
2000-04-10 38/104
(TEST CONDITIONS VCC = 9V/5V, Ta = 25 i 3°C)
NOTE ITEM SW MODE
SW SW55 SW56
MEASUREMENT METHOD
{1) Set the bus control data to the preset value.
21 Connect #54 to an external power supply (PS).
53,‘ Turn the Y mute off (0), set the unicolor to the center (100000), set the brightness
to the center (1000000), set RGB cutoff to the center (10000000), and observe #13
(Row)-
:4‘ Use unicolor to adjust the difference in the #13 picture period DC level to 0.7V
when the power supply is set to V54 and V54+0.7 V.
(5} Applying V54+0.7 V to #54 as shown in the diagram below, calculate 4V1 of #13,
then calculate AVZ of #13 when SW56 is on.
6 Connect a 2—kQ resistor between #56 and C56 (10F) and calculate .AV3 of #13.
Calculate GDTC and GDTR from the following formula.
GDTC ((AVZ [V] — 4V1 [V]) + 0.7 [V]) + 0.7 [V]
GDTR ((AV3 [V] — AV1 [V]) + 0.7 [V]) + 0.7 [V]
DC Restoration Rate OPEN
P13 Compensation Amp C B 1 l
Gain ON
V54+OJV —| [—
& . \V
,,,,,,,,,, e 1
swss OPEN 3 5 )
Picture period
V54 + 0.7 V
swse ON 4V2
2 k8) resistor JVE
inserted
#13 waveform
TOSHIBA
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA131OAN"38
TA1310AN
2000-04-10 39/104
(TEST CONDITIONS VCC = 9V/5V, Ta = 25 i‘ 3°C)
SW MODE
MEASUREMENT METHOD
P14 SeIf—Diagnosis Y-IN
‘1‘ Set the bus control data to the preset value.
‘2, Set SW54 to C (connect the Y input to AC-GND), connect #54 to an external power
supply (PS), and turn read mode on.
(.33 When the power supply is increased from V54 to V54 + 0.7V, check that in read
mode Y-IN changes from error to OK to error. SCDC
4 Next, set SW54 to A and input a sine wave from TG‘7 to TPS4. Apply a signal on
#54 as shown in the diagram. Check that there is no problem with the Y IN in read
mode. SCAC
0-1 V(p-p)
or higher
L SYNC
Sine wave 100 kHz
P15 Y Mute
(i) Set the bus control data to the preset value.
2 Input a 100-kH2 sine wave to TP54 and adjust #54 to 0.7 Vp_p.
3 Turn the Y mute on (1) and measure the #56 amplitude VYM1.
’4} Turn the Y mute off (0) and measure the #56 amplitude VYMO.
'5} Calculate the following formula.
GYM [dB] = 20 x eog(VYM1/VYMO)
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA131OANv39
TOSHIBA
TA1310AN
2000-04-10 40/104
(TEST CONDITIONS vcc = 9V/5V, Ta = 25 i 3°C)
NOTE ITEM ‘ sw MODE
5W54 5W55 5W56
MEASUREMENT METHOD
(1) Set the bus control data to the preset value.
‘ZV Set SW54 to A and input a sweep signal to TP54.
{37 Set the amplitude of #54 to 20 mVp_p.
[4) Set the unicolor to the maximum (111111), set the brightness to the center
(1000000), set the RGB cutoff to the center (10000000), turn the Y mute off (0),
turn test mode on (0), and set the picture sharpness to the maximum (111111).
:51 Connect an emitter—follower to TP13 (R OUT) and use a spectrum analyzer to
observe TP13 (R OUT).
‘62 Seek the peak point frequency FAp as shown in the diagram.
Sharpness Peak Gain [an]
P A B PEN
16 Frequency 0
Freque ncy [H7]
TOSHIBA
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA1310AN—40
TA1310AN
2000-04-10 41/104
(TEST CONDITlONS VCC = 9V/5V, Ta = 25 i 3”C)
NOTE ITEM sw MODE
SW54 5W55 5W56
MEASUREMENT METHOD
Sharpness Control
A B OPEN
Set the bus control data to the preset value.
Set SW54 to A and input a sine wave to TP54A.
,1 Set the amplitude of #54 to 20 mVp_p.
Set the unicolor to the maximum (111111), the brightness to the center (1000000),
RGB cutoff to the center (10000000), and turn the Y mute off (0).
/ Set the picture sharpness to the maximum (111111). Connect an emitter—follower t0
TP13 (R OUT)..When the frequencies are 100 kHz and 2.4 MHz, measure the
respective V100 and V24 amplitudes.
Next, set the picture sharpness to the minimum (000000). As in ‘15), when the
frequencies are 100 kHz and 2.4 MHz, measure the V100 and V24 amplitudes
respectively.
Calculate GMAX and GMIN from the following formula.
GMAx. GMIN [d3] = 20 X 809 (V24 + V100)
Sharpness Contro) ' A B OPEN 13
Center Characteristics
Repeat steps :11 to {4) of P17.
Set the picture sharpness to the center (100000)
Connect an emitterefollower to TP13 (R OUT). When the frequencies are 100 kHz
and 2.4MHz, measure the V100 and V24 amplitudes respectively.
Calculate GCEN from the following formula.
GCEN [d8] = 20 X 609 (V24 + V100)
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA1310AN—41
TOSHIBA
TA1310AN
2000-04-10 42/104
(TEST CONDITIONS VCC = 9V/5 V, Ta = 25 1” 30C)
NOTE ITEM sw MODE
5W54 SW55 SW56
MEASUREMENT METHOD
{11 Set the bus control data to the preset value.
[2) Set SW54 to A and input a 2T pulse (STD) signal from TG-7 to TP54A.
":3; Set the unicolor to the maximum (111111), the brightness to the center (1000000),
the RGB cutoff to the center (10000000), turn the Y mute off (0), and set the
picture sharpness to the center (100000).
14‘: Connect an emitter-follower to TP13 (R OUT) to observe TP13 (R OUT).
(5‘ Calculate TY from the following diagram.
2T pulse (STD)
Between Y W and R .
P A B N : :
19 OUT Delay Time OPE : .......... i
Y IN (#54)
50 “/6
TOSHIBA
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA131 OAN— 42
TA1310AN
2000-04-10 43/104
NOTE lTEM
(TEST CONDITIONS VCC = 9V/5V, Ta = 25 i 3°C)
SW MODE
SW54 SW55 SW56
MEASUREMENT METHOD
P20 VSM Peak Frequency
(r-) ‘N
A B OPEN '
Set the bus control data to the preset value.
Set SW54 to A, turn the Y mute off, and input a sweep signal to TP54.
Set the #54 amplitude to 100 mVp_p.
Observe TP1 (VSMOUT) with a spectrum analyzer and seek the peak point frequency
P21 VSM Gain
Iv--", 01;
A B OPEN
Set the bus control data to the preset value.
Set SW54 to A, turn the Y mute off (0), and input the FVSM sine wave (see P20
above) to TP54.
Set the amplitude of #54 to 100 mVp_p.
When the VSM gain is on (0), measure the TP1 (VSMOUT) amplitude VVSMO (Vp_p).
Next, measure the TP1 (VSMOUT) amplitude VVSM1 (Vp_p) when the VSM gain is off
(1). -
' Calculate GVSMO and GVSM1 by the following formulas.
GVSMO [d8] = 20 X €09 (VVSMO + 0.1)
GVSM1[dB] = 20 X (09(VVSM1 I 0.1)
VSM Muting
22 Threshold Voltage
A 8 OPEN
‘v Repeat steps (15> to {3‘ of P21.
, Connect the external power supply (PS) to #10 and increase the voltage from 0.5V.
Read the PS vo|tage VVM10 when the TP1 (VSMOUT) amplitude disappears, as
shown in the following diagram.
Set SW6 to open, connect #6 to an external power supply, increase the voltage
from 1.5V. When the TP1 (VSMOUT) amplitude disappears as shown in the
following diagram, read the PS vo|tage VVM6-
VSMOUT waveform -——
VSMOUT waveform —>
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA131 DAM 43
TOSHIBA
TA1310AN
2000-04-10 44/1 04
(TEST CONDITIONS VCC = 9V/5V, Ta = 25 i 3CC)
NOTE ITEM sw MODE
5W54 5W55 SW55
MEASUREMENT METHOD
HI: Repeat steps <11.) to (3’) of P21 above.
:2) Set SW6 to open, input a pulse as shown below to #6 (Ys/Ym IN), and measure
the response times THM1 and THMZ at that input.
3 Similarly, input the pulse to #10 (050 Ys IN) and measure the response times Tng
and THM4 at that input.
VVM1O IV}
VVM6 [VJ
VSM ngh Speed #6 waveform
P23 Mutlng Response A 8 OPEN “0;;me THM1(3)
THM) (4)
VSMOUT \
Mute period
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA1310AN—44
TOSHIBA
TA1310AN
2000-04-10 45/104
(TEST CONDITIQ_N__SHVCC = 9 V/S v, Ta = 25 : 3°C)
NOTE ITEM sw MODE
5W54 5W55 5W56
MEASUREMENT METHOD
{1} Set the bus control data to the preset value.
’2, Input a signal like that shown in the diagram below to TP54, turn the Y mute off
(0), and adjust the amplitude of #54 to 0.7 Vp_p.
‘ Set the unicolor to the maximum (111111), increase the picture sharpness from the
minimum to a level where the R OUT waveform is not distorted.
{4‘ Measure the phase differences TVM24: TVMFP: and TVMZT between TP1 (VSMOUT)
and TP13 (R OUT) when the signal is an FVSM sine wave, a 2T pulse, and a 2.4VMHz
signal, as shown in the diagram below. (To make a waveform at TP1, reverse the
waveform at TP13 using an oscilloscope.)
TVM24, TVMFP -——>g
Sine wave
P24 VSM Phase A B OPEN
(Note 1) : When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
(Note 2) : Ensure the composite signal is always input to pin 38 (SYNC IN).
TA1310AN—45
TOSHIBA
TA1310AN
2000-04-10 46/104
Chroma stage
(#16VCC = 9V, #37 VCC = 9V, #51VCC = 5V, Ta = 25 i300
SW MODE
SW45 SW46
MEASUREMENT METHOD
ACC Characteristics
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 1 : 1
, When the chroma input amplitude levels are set to 10, 30, 300, and 600 mVp_p,
measure the output amplitudes va10, va30, va300, and va600 of the R-Y output pin
(TP48).
‘ Calculate A = va30/va600.
Color Difference
Output Level
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst chroma = 300 mVp_p : 300 mVp_p
,3 Change the burst phase so that bar 2 of the B—Y output pin (TP47) output
waveform is the bottom peak and bar 7 is the top peak.
» Measure the amplitude (VB) of the B-Y output pin (TP47).
, Set the burst phase to 180°.
Measure the amplitude (VR) of the R-Y output pin (TP48).
Color Difference
Output Relative
Amplitude
3 Calculate the relative amplitude VRB from the following formula using the values
obtained in steps .3) and (5,? of C02 above.
VRB = vR/VB
Color Difference
Output Demodulation
Input a rainbow signal (01) to the chroma input pin (TP45).
Burst : chroma = 200 mVp_,J : 200 mVp_p
* Calculate the demodulation angles 93cm and Gcht of the B—Y output pin (TP47)
and the R-Y output pin (TP48) using the formulas and diagram below.
Peak 1
(Bar 6 is the peak at B90° - tan’1 2A
‘3‘“ 3
(Bar 3 is the peak at R-Y)
' 6Bcnt OO—tan“ 2_A+ 3 —150
Demodulation waveform
Color Diffe rence
Output Relative
Calculate the relative phase 6R3 from the following formula using the values
obtained in C04 above.
9R8 = 6cht _ eBcnt
(Note 1) : Where the bus data are not specified, set the preset values.
(Note 2) 2 Ensure the sync signal is always input to TP38 (SYNC IN).
TA1310AN—46
TOSHIBA
TA131OAN
2000-04-10 47/1 04
NOTE ITEM
(#16VCC = 9v, #37 Vcc = 9v, #51vcc = 5v, Ta = 25 $300
SW MODE
MEASUREMENT METHOD
Color Difference
Output Tint
Adjustment
Characteristics
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp_p : 300 mVp_p
Measure the demodulation angles 93' and GR' in the outputs with the tint set to
the maximum (subaddress (03H), data (FE)). Calculate eBmax and eRmax by the
following formulas.
eBmax = 93' _ 9Bcnt
9Rmax = eR' _ echt
Measure the demodulation angles 93" and 9R" in the outputs with the tint set to
the minimum (subaddress (03H), data (00). Calculate 98min and 9Rmin by the
following formulas.
98min = 98"_68cnt
9Rmin = 9R"_8cht
Supply Voltage
C7 Dependence of Color
Difference Output
Input a rainbow signal (signal C—1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp_p : 300 mVp.p
As in C02, measure the amplitudes AVBp and AVRp of the B—Y output pin (TP47)
and R-Y output pin (TP48) when the 5-V VCC is set to 5V + 0.3 V. Calculate the
amplitude ratios BVp and RVp when the S-V VCC is set to 5V.
AVBp — VB AVRp — vR
BVp =—_v3 x 100 RVp =——VR X 100
Using the same tests as above, calculate BVn and RVn when the 5—V VCC is set to
5 V—0.3 V
BVn = 4V8” “ VB_ X 100 RVn =
AVRn _- VR X 100
Identification
C8 Sensitivity
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 1 : 1
Gradually reduce the input signal amplitude from 100 mVp_p. When the B-Y output
pin (TP47) signal disappears (when the current is DC), measure the input signal
amplitude VCB.
,? Gradualiy increase the input signal amplitude from OmVp_p. When a demodulation
signal appears on the B-Y output pin (TP47), measure the input signal amplitude
Bus Read
C9 Identification
Perform the same tests as above while observing the bus read : When the input
signal amplitude is VCB: check that the first bit is set to 0 (bCB).
When the input signal amplitude is VBC: check that the first bit is set to 1 (bBC).
(Note 1) : Where the bus data are not specified, set the preset values.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA1310AN—47
TOSHIBA
TA1310AN
2000-04-10 48/104
(#16VCC = 9V, #37 VCC = 9V, #51 VCC = 5V1'Ta = 251'33C)
SW MODE
MEASUREMENT METHOD
Color Difference
Output Voltage
Difference in 1H
Period
Input no more than 300—mVp_p as a burst signal to chroma input pin (TP45).
Measure the DC voltage difference (vBH) between the H blanking period and
picture period of the B-Y output pin (TP47).
‘ Measure the DC voltage difference (VRH) between the H blanking period and
picture period of the R—Y output pin (TP48).
Input signa! 3
H blanking period
: Picture period ,
Output signal 3‘ 5 4;
Color Difference
Output Voltage
Difference Every 1H
Period
Input no more than 300-mVp_p as a burst signal to chroma input pin (TP45).
Measure the DC voltage difference (vBG) between the H picture period and H + 1
picture period of the B-Y output pin (TP47).
' Measure the DC voltage difference (vRG) between the H picture period and H + 1
picture period of the R-Y output pin (TP48).
:chture period
:Plcture period
Output signal
H 3 H+1
Color Difference
Output DC Voltage
Input no more than 300—mVp_p as a burst signal to chroma input pin (TP45).
Measure the picture period DC voltage VB of the B-Y output pin (TP47).
Measure the picture period DC voltage VR of the R~Y output pin (TP48).
Difference between
DC Voltage Axes of
Color Difference
Output
Use the following formula to calculate the difference (VRB) between the voltage
axes from the following formula using the values obtained in C12 above.
VRB = VR — VB
X'tal Free—Run
Frequency
No signal input to the chroma input pin (TP45) (set SW45 to A).
Observe the CW output pin (TP50) and measure the output frequency Xf.
(Note 1) : Where the bus data are not specified, set the preset values.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA131OAN—48
TOSHIBA
TA1310AN
2000-04-10 49/104
NOTE ITEM
(#16VCC = 9V, #37 VCC = 9V, #51VCC = 5V, Ta = 25 i— 30C)
SW MODE
MEASUREMENT METHOD
APC Frequency
C15 Control Sensitivity
No signal input to the chroma input pin (TP45) (set SW45 to A).
Set SW46 to open and connect an external power supply to the APC filter pin
(#46).
Change the voltage of external power suppIy to a value regarded as Vc3, where the
output frequency of the CW output pin (TP50) is 3.579545 MHz (Xf).
Measure the CW output frequencies Xf (+ 100) and Xf (—100) for Vc3 + AVC3
(i100 mV). Calculate the free-run sensitivity Bf from the following formula.
B _ Xf(+ 100) —Xf(—100)
f‘ 200
APC Pull—In/Hold
C16 Range
Input a 3.579545-MH2 sine wave (300 mVp_p) to the chroma input pin (TP45).
Vary the input sine wave frequency in i10-Hz steps from 3.579545 MHz. When the
B-Y output pin (TP47) picture period amplitude changes, measure the difference
between 3.579545 MHz and the varied sine wave frequencies : on the plus side,
fh +, and on the minus side, fh_(hold).
Increase and decrease the above measured values by 1 kHz : (fh+) +1 kHz and
(fh_) —1 kHz. Adjust to approximately 3.579545 MHz in :t10-Hz steps. When the B-
Y output pin (TP47) picture period amplitude changes, measure the difference from
3.579545 MHz : on the plus side, fp+, and on the minus side, fp 4 (pull-in).
C17 Residual Carrier Level
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp_p : 300 mVp_p
Measure the color subcarrier leak levels VBNo and VRNO of the B-Y output pin
(TP47) and the R-Y output pin (TP48).
Residual Higher
C18 Harmonic Level
Input a rainbow signal (signal C1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp-p : 300 mVp_p
Measure the higher harmonic levels VBHN and VRHN of the B-Y output pin (TP47)
and the R—Y output pin (TP48).
(Note 1) : Where the bus data are not specified, set the preset values.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA1310AN—49
TOSHIBA
TA1310AN
2000-04-10 50/104
(#16Vcc = 9v, #37 Vcc = 9v, #51Vcc = 5v, Ta = 25: 3°C)
NOTE ITEM sw MODE
SW45 SW46
MEASUREMENT METHOD
{11 Connect the VCC (5V) via a 750 S2 resistor to the R—Y output pin (TP48).
‘2} Input a 3.579545-MH2 sine wave (50 mVp_p) to the chroma input pin (TP45).
"53?» Set to BPF mode (subaddress (03H), data (80)).
(4) Set f0 of the sine wave to (3.579545 M — 1 M) Hz, measure the output amplitude of
TP48, and calculate the gain from the input (68').
TOF-BPF “5“ Set to of the sine wave to (3.579545 M+1 M) Hz, measure the output amplitude of
Characteristics TP48, and calculate the gain from the input (GBH).
1'67? Set to TOF mode (subaddress (03H), data (81)).
17; Set to of the sine wave to (3.579545 M — 1 M) H2, measure the output amplitude of
TP48, and calculate the gain from the input (GTL).
1'8; Set f0 of the sine wave to (3.579545 M + 1 M) Hz, measure the output amplitude of
TP48, and calculate the gain from the input (GTH). -
:1» Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
C OUtpUt B ON Burst : chroma = 300 mVp_p : 300 mVp_p
20 Amplitude
“2‘1 Measure the amplitude vCW of the CW output pin.
(Note 1) : Where the bus data are not specified, set the preset value.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA1310AN—50
TOSHIBA
TA1310AN
2000-04-10 51/104
Color difference stage
(#16VCC = 9V, #37 VCC = 9V, #51VCC = 5V, Ta = 25 i 3°C)
SW MODE
SW6 SW45 SW52 SW53
MEASUREMENT METHOD
Color Difference
Input Clamp Voltage
C A A A
7 Connect the color difference input pin to AC-GND. (Set SW52A and SW53A to A.)
Measure the voltage VRY of the R-Y input pin (#52) and the voltage VBY of the B-
Y input pin (#53).
Color Difference
Input/Output Delay
“'17! Set to external color difference input mode (subaddress (05H), data (81)).
(2" Now set as follows
Unicolor maximum (subaddress (00H), data (3F))
Brightness maximum (subaddress (01H), data (7F))
Color center (subaddress (02H), data (40)).
Set SWSZA and SW53A to B. Input signal (2-2 to the R-Y input pin (TP52) and the B-
Y input pin (TP53).
f0 = 100 kHz, picture period amplitude = 0.2 Vp_p
,4, Measure the signal delay time (DLRY) from the R-Y input pin (TP52) to the R output
" (TP13).
{5‘ Measure the signal delay time (DLBY) from the B—Y input pin (TP53) to the B output
(TP15).
Unicolor Adjustment
Characteristics
{1} Set to external color difference input mode (subaddress (05H), data (81))
‘ Now set as follows
Brightness maximum (subaddress (01H), data (7F))
Color : center (subaddress (02H), data (40))
Relative phase amplitude: standard (subaddress (12H), data (00)).
3 Set SW52A and SW53A to B. Input signal C—2 to the R—Y input pin (TP52) and the B-
Y input pin (TP53).
f0 = 100 kHz, picture period amplitude = 0.2 Vp_p
(4‘? Set unicolor t0 the maximum (subaddress (00H), data (3F)). Measure the RUmax, the
amplitude of the R output (TP13), and BUmax, the amplitude of B output (TP15).
:5: Set unicolor to the minimum (subaddress (00H), data (00)). Measure the RUmin, the
amplitude of the R output (TP13), and BUmin, the amplitude of B output (TP15).
{6,7 Calculate the unicolor adjustment characteristics uR and uB by the following
formulas.
RU - ~
A uB = 20 Loggufl
uR = 20 Log
(Note 1)
(Note 2)
TA1310AN— 51
Where the bus data are not specified, set the preset value.
Ensure the sync signal is always input to TP38 (SYNC IN).
TOSHIBA
TA1310AN
2000-04-10 52/104
NOTE ITEM
(#16VCC = 9v, #37 VCC = 9v, 9‘5ch = 5v, Ta = 25: 30c)
SW MODE
SW6 SW45 SW52 SW53
\ MEASUREMENT METHOD
Color Adjustment
4 Characteristics
Set to external color difference input mode (subaddress (05H), data (81))
Now set as follows :
Unicolor : maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Relative phase amplitude: standard (subaddress (12H), data (00)).
Set SW52A and SW53A to 3. Input signal (2—2 to the RAY input pin (TP52) and the B-
Y input pin (TP53).
f0 = 100 kHz, picture period amplitude = 0.2 Vp-p
Set the color to the maximum (subaddress (02H), data (7F)). Measure RCmax, the
amplitude of the R output (TP13), and BCmax, and the amplitude of the 3 output
(TP15).
Set the color to the center (subaddress (02H), data (40)). Measure RCcnt, the
amplitude of the R output (TP13), and BCcnt, the amplitude of the B output (TP15).
Set the color to the minimum (subaddress (02H), data (00)). Measure RCmin, the
amplitude of the R output (TP13), and BCmin, the amplitude of the 8 output (TP15)
Calculate the color adjustment characteristics CRmax: CRmin, CBmax, and CBmin by
the following formulas.
cRmax = 20 Log M cRmin 20 Log w
RCCNT RCCNT
BCMAx BCMIN
CBmaX _ 20 LOQTCNT cBmm _ 20 Log raw
(Note 1) : Where the bus data are not specified, set the preset value.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC 1N).
TA1310AN—52
TOSHIBA
TA1310AN
2000-04-10 53/104
(#16 VCC = 9V, #37 VCC = 9V, #51_VCC = 5V, Ta = 25i‘ 3°C)
SW MODE
SW45 S~W52 5W53
MEASUREMENT METHOD
RGB Output Half—
Tone Characteristics
Input a rainbow signal (signal C—1) to the chroma input pin (TP45).
Burst : chroma = 200 mVp_p : 200 mVp_p
Now set as follows :
Unicolor : maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Color : center (subaddress (02H), data (40))
Relative phase amplitude: standard (subaddress (12H), data (00)).
» Measure the amplitudes VRo: v60, and V30 of the R output pin (TP13), the G
output pin (TP14), and the B output pin (TP15).
‘ Set SW6 to B and repeat the test in "33 above. Measure the amplitudes VRH, VGH,
and VBH.
' Calculate the halfetone characteristics VRHO, VGHO, and VBHO by the following
formulas.
RH VGHO = 20 Loggj— vBHo = 20 Log VB”
V = 20 L0
RHO g VRO Go VBo
RGB Output
Amplitude
Input a rainbow signal (signal C—1) to the chroma input pin (TP45).
Burst : chroma = 200 mVp.p : 200 mVp_p
Now set as follows :
Unicolor : maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Color : center (subaddress (02H), data (40)).
x Switch the relative phase amplitude (subaddress (12H)) and measure the amplitudes
(peak values) of the RGB outputs (TP13, TP14, TP15) according to the table below.
Subaddress (12H) data TP13 TP14 TP1S
STD (00) vRSTD VGSTD VBSTD
DVD (40) vRDVD VGDVD VBDVD
T58 (80) vRTSB VGTSB vBTSB
DTV (C0) vRDTV VGDTV VBDTV
RGB Output Relative
Amplitude
Using the values obtained in A05 above, calculate the relative amplitudes by the
following formulas.
VR*** VG***
VRB*** = VB*** VGB = VB***
TA131 OAN— 53
(Note 1) : Where the bus data are not specified, set the preset value.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TOSHIBA
TA131OAN
2000-04-10 54/104
NOTE ITEM
(#16 vcc = 9v, #37 Vcc = 9v, #51 vcc = 5v, Ta = 25 $330
sw M6613
MEASUREMENT METHOD
RGB Output
8 Demodulatlon Angle
"1.» Input a rainbow signal (signal 01) to the chroma input pin (TP4S).
Burst : chroma = 200 mVp_p : 200 mVp_FJ
'2) Now set as follows
Unicolor : maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Color : center (subaddress (02H), data (40)).
Adjust the tint so that the waveform angle of the B-Y output pin (TP47) is 0°.
"32 Switch the relative1phase amplitude (subaddress (12H)) and measure the phase of
the RGB outputs (TP13, TP14, TP15) according to the table below.
Subaddress (12H) data TP13 TP14 TP1S
STD (00) BRSTD BGSTD BBSTD
DVD (40) 9RDVD 9GDVD BBDVD
T58 (80) GRTSB BGTSB GBTSB
DTV (C0) 9RDTV BGDTV BBDTV
(*)The test method is the same as those for CO4 in Chroma stage.
(Measure bar 2 of the G axis.)
RGB Output Relative
A9 Phase
1 Using the values obtained in A08 above, calculate the relative amplitudes by the
following formulas.
6R3*** = 6R‘*** — BB*** BGB*** = BG*** — GB***
(Note 1) : Where the bus data are not specified, set the preset value.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA1310AN—54
TOSHIBA
TA1310AN
2000-04-10 55/104
NOTE ITEM
(#16 VCC = 9V. #37 VCC = 9v, #51VCC = 5v, Ta = 25 i 313C)
SW MODE
MEASUREMENT METHOD
Color Difference
A11 EXT ——-> INT
Crosstalk
{'1‘ No signal input to the chroma input pin (TP45) (set SW45 to A).
2 Now set as follows :
'v, U5, ' '4;
Unicolor : maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Relative phase amplitude : standard (subaddress (12H), data (00)).
Set SW52A and SW53A to 8. Input signal C—2 to the R-Y input pin (TP52) and the B-
Y input pin (TP53).
f0 = 4MH2, picture period amplitude = 0.2 Vp_p
, Set to external color difference input mode (subaddress (05H), data (81)).
Adjust the color data so that the amplitude of the R output pin (TP13) is 2Vp_p.
, Set to internal color difference input mode (subaddress (05H), data (80)).
Measure the amplitude vxER of the R output pin (TP13) and calculate the amount
of crosstalk. -
XEIR = 20 Log XTER
Repeat steps {4) to ”7: above for the G and B axes and calculate the amount of
crosstalk on those axes.
XEIG = 20 Log VX—ZEG XEIB = 20 Log VX—ZEB
(Note 1) : WWhere the bus data are not specified, set the preset value.
(Note 2) : WEnsure the sync signal is always input to TP38 (SYNC IN).
TA131OAN—55
TOSHIBA
TA1310AN
2000-04-10 56/104
NOTE ITEM
(#16VCC = 9v, #37 VCC = 9v, #51Vcc = 5v, Ta = zsi 3°C)
SW MODE
MEASUREMENT METHOD
Color Difference
A12 |NT—>EXT
Crosstalk
‘1; Input a rainbow signal (signal C—1) to the chroma input pin (TP45).
Burst : chroma = 200 mvp‘p : 200 mVp_p
2 Now set as follows :
Unicolor : maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
ReIative phase amplitude : standard (subaddress (12H), data (00)).
{35: Set SW52A and SW53A to A.
{41‘ Set to internal color difference input mode (subaddress (05H), data (80))
<5)1 Adjust the color data so that the amplitude of the R output pin (TP13) is 2Vp_p.
"6; Set to external color difference input mode (subaddress (05H), data (81)).
'7‘ Measure the amplitude VXIR of the R output pin (TP13) and calculate the amount of
crosstalk. A
XIER = 20 Log "X_%
£8) Repeat steps (4: to ~17; above for the G and B axes and calculate the amount of
crosstalk on those axes.
XIEG = 20 Logvx% XIEB = 20 Log
(Note 1) : Where the bus data are not specified, set the preset value.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA1310AN—56
TOSHIBA
TA1310AN
2000-04-10 57/104
(#16VCC = 9v, #37VCC = 9v, #51 VCC = 5v, Ta = 25: 3‘10
NOTE ITEM SW MODE
SW6 SW45 SW52 SW53
MEASUREMENT METHOD
{1) Set to external color difference input mode (subaddress (05H), data (81)).
52‘,» Now set as follows :
Unicolor : maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Relative phase amplitude : standard (subaddress (12H), data (00))
Y mute ' on (set D7 of subaddress (02H) to 1)
J Set SW52a to a, set SW53a to b, and input the signal shown in Fig.1I below to the
B-Y input pin (TP53).
I54; Set the color to the minimum and measure the picture period DC voltage VBYO of
Co'or Y . _ c B A A the B output pin (TP15).
Characterlstlcs (5‘ increase the color from the minimum. When the picture period DC voltage of the R
output pin (TP13) changes, measure the picture period DC voltage VBY1 of the 8
output pin (TP15).
I65 Using the values obtained above, calculate the color 7 start point C759 by the
following formula.
I I 1V(p)
Cvsp = VBY1 — VBYO
FigJi‘I
TOSHIBA
(Note 1) : Where the bus data are not specified, set the preset value.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA1310AN~ 57
TA1310AN
2000-04-10 58/104
Y stage
(#16Vcc = 9v, #37 VCC = 9v, #51 VCC = 5v, Ta = 25 i 3%)
SW MODE
MEASUREMENT METHOD
Sync |nput~DL
Output AC Gain
i 1 ,7‘
{2) Turn DL mode off (subaddress (12), data (80)) and measure the picture period
Input signal C—2 to the Sync Input pin (TP38).
f0 = 100 kHz, picture period amplitude = 0.2 Vp—p
amplitude V43Off 0f the DL output (TP43). Calculate the gain from the input (GYoff)
by the formula shown below.
Turn DL mode on (subaddress (12), data (A0)) and measure the picture period
amplitude V430” of the DL output (TP43).
Calculate the gain from the input (GYon) by the formula shown below.
GYOff = 20 Log M 0—2
0.2 GYon = 20 Log
Sync |nput~DL
Output Frequency
: Turn DL mode on (subaddress (12), data (A0)) and measure the picture period
Input signal C—2 to the Sync Input pin (TP38).
f0 = 8MH2, picture period amplitude = 0.2 Vp_p
Turn DL mode off (subaddress (12), data (80)) and measure the picture period
amplitude V438Moff of the DL output (TP43). Calculate the gain from the input
(GfYoff) by the formula shown below.
amplitude V438M0n of the DL output (TP43). Calculate the gain from the input
(GfYon) by the formula shown below.
GfYon = 20 Log 35m
GfYoff = 20 Log 153M v43
V430ff
Sync |nput~DL
Output Dynamic
1 Input signal C-3 to the Sync Input pin (TP38).
‘ When the amplitude A of signal C3 is increased from 0, observe the change in the
picture period amplitude of the DL output (TP43). With DL mode turned on and off,
when the output amplitude stops changing in a linear direction, measure the input
signal amplitude A.
Sync |nput~DL
Output Transfer
Characteristics
, Turn DL mode on (subaddress (12H), data (20)) and measure the amount of delay
Input signal C-Z to the Sync Input pin (TP38).
f0 = 100 kHz, picture period amplitude = 0.2 Vp_p
TYLD from the Sync Input (#38) to the DL output (TP43).
(Note 1) : Where the bus data are not specified, set the preset vaIue.
(Note 2) : Ensure the sync signal is always input to TP38 (SYNC IN).
TA1 31 OAN— 58
TOSHIBA
TA1310AN
2000-04-10 59/104
Text stage
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 3CC)
SW MODE & SUB ADDRESS & DATA
504 505 506 SQL 508 509 51o 5:34
MEASUREMENT METHOD
AC Gain
‘51 ‘1
A A OFF A A A OFF A
Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp-p) to pin 54.
Measure the picture period amplitudes of pins 13, 14,
and 15. (V13, V14, V15)
GR v13/0.2
GG V14/0.2
GB V15/0.2
Frequency
Characteristics
A A OFF A A A OFF A 3.
Input signal 1 (f = 8MHz, picture period amilitude
,‘ Measure the picture period amplitudes of pins13, 14,
and 15. (V13 8MH2, v14 8MH2, and V15 8MH2).
Using the values obtained in T01 above, calculate the
frequency Characteristics from the following formulas.
20 X €09 (V13 8 MHz/V13)
GfG 20 X €09 (v14 8 MHz/v14)
GfB 20X€og (V15 8MH2/V15)
Unicolor Adjustment
Characteristics
A A OFF A A A OFF A
Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp_p) to pin 54.
; When the subaddress (00, unicolor) data are changed
to the maximum (3F), the center (20), and the
minimum (00), measure the picture period amplitude
of pin 13.
(VUMAX VUCNT, VUMIN)
' Calculate the maximum, minimum amplitude ratio for
unicolor in decibels. (AVU)
Brightness
Adjustment
Characteristics
A A OFF A A A OFF A
Input signal 2 to pin 54 and adjust the picture period
amplitude input of pin 13 to 1Vp_p.
When the subaddress (01, brightness) data are
changed to the maximum (FF), the center (C0), and
the minimum (80), measure the picture period DC
voltage of pin13.
(VbrMAX, VbrCNT, VbrM'N)
Brightness Control
Sensitivity
A A OFF A A A OFF A
Using the values obtained in T04 above, calculate the
brightness sensitivity from the following formula.
Gbr = (VbrMAX - VbrM'“) / 128
TA1310AN— 59
TOSHIBA
TA131OAN
2000-04-10 60/104
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 3CC)
SW MODE & SUB ADDRESS & DATA
504 S05 506
MEASUREMENT METHOD
White Peak Slice
A A OFF
Change the bus data and set the sub-contrast to the
maximum.
= Input signal 2 to pin 54 and gradually increase the
amplitude.
‘ When pin13’s picture period is clipped, measure the
picture period amplitude of pin 13.
Black Peak Slice Level
A A OFF
L Apply an external power supply to pin 54 and
gradually decrease the voltage from 3.7V.
7 When their picture periods are clipped, measure the
picture period amplitudes of pins 13, 14, and 15.
DC Restoration
A A OFF:
I: Input the T67 stair—step signal to pin 54.
, Adjust the unicolor data so that the pin 13 stair-step
output signal is 1.25 Vpep.
‘ When the stair—step signal APL is changed from 10%
to 90%, measure the voltage change at point A in
the diagram below.
Repeat steps 51‘» to '3‘ above on pins 14 and 15.
Change APL
Pin13, 14, ‘5 output signals
TA1310AN—60
TOSHIBA
TA131OAN
2000-04-10 61/104
(TEST CONDITIONS VCC = 5v and 9v, Ta = 25 i 300
SW MODE 8: SUB ADDRESS 8: DATA
MEASUREMENT METHOD
RGB Output S/N
Measure the picture period noise levels of pins 13, 14,
and 15 with an oscilloscope.
(”13, "14. n15(Vp-p))
Calculate the S/N for each pin.
N13 = —-20 X Log (2.5/(0.2 X n13))
N14 —20 X Log (2.5/(0.2 X n14))
N15 ~20X Log (2.5/(0.2Xn15))
RGB Output Emitter—
Follower Drive
Current
,1 Connect a 3.5-V external power supply to pin 13 via a
2 Perform the same test on pins 14 and 15. (I#14, l#15)
100—9 resistor (|#13) and measure the sink current on
pin 13.
RGB Output
Temperature
Coefficient
Half-Tone
Characteristics
“ Calculate the voltage changes per degree of
When the temperature changes through the range
—20°C to +65°C, measure the changes in the picture
period amplitudes of pins13, 14, and 15.
temperature.
(At13, At14, At15)
‘ Input signal 1 (f = 100 kHz, picture period amplitude
,: Measure the picture period amplitude of pin13. (V133
= 0.2 Vp.p) to pin 54.
Measure the picture period amplitude of pin 13. (v13A
Apply 1.5V DC to pin 6.
GHT = V13B/V13A
HaIf-Tone ON
Voltage
, Input signal 1 (f = 100 kHz, picture period amplitude
5, Connect an external power supply to pin 6 and
,2 When the picture period amplitude of pin 13 changes,
= 0.2 Vp.p to pin 54.
gradually increase the voltage from 0 V.
measure the pin3 voltage. (VHT)
V—BLK Pulse Output
,, Measure the voltages of pins13, 14, and 15 during the
vertical blanking period.
(VVR: VVG: VVB)
H—BLK Pulse Output
Measure the voltages of pin513, 14, and 15 during the
horizontal blanking period.
(VHR. VHG: VH3)
TA1310AN—61
TOSHIBA
TA1310AN
2000-04-10 62/104
NOTE ITEM
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 3"C)
SW MODE & SUB ADDRESS 8: DATA
s03 504 505 $06 507 508 509 510 S54
MEASUREMENT METHOD
Blanking Pulse Delay
16 Time
A A A OFF A A A OFF C
Measure tdON and tdQFF using the signal input to
pin 34 (FBN-IN) (A below) and the signa|s output from
pins 13, 14, and 15 (8 below).
(A)Signal input to pin 34
I 63.5 L15 I
(B)Signa|s output from
pins13, 14, and 15
Sub—Contrast Control
17 Range
A A A OFF A A A OFF A
, Input sighal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp_p) to pin 54.
“ When the subaddress (0F, sub-contrast) data are
changed to the maximum (8F), the center (88), and
the minimum (80), measure the picture period
amplitude of pin13,
Calculate the maximum and minimum amplitude
ratios in relation to the sub~contrast center in
decibels.
(AVSU +, AVSU—)
T18 RGB Output Voltage
A A A OFF A A A OFF C
2? Measure the picture period amplitudes of pins13, 14,
and 15.
Cut—Off Voltage
T19 Control Range
A A A OFF A A A OFF C
, When the R cutoff (subaddress (08)) data are changed
to the maximum (FF), the center (80), and the
minimum (00), measure the picture period amplitude
of pin 13 and calculate the change in maximum and
minimum from the center.
(CUT+, CUT—)
‘ Make the following changes in steps (1) and (2)
above and measure
Change the subaddress (09) data and measure pin 14.
Change the subaddress (0A) data and measure pin 15.
TA1310AN w 62
TOSHIBA
TA1310AN
2000-04-10 63/104
(TEST COND|T|ONS VCC = 5V and 9V, Ta = 25 i 3CC)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
Drive Adjustment
Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp_p) to pin 54.
When the G drive subaddress (06) data are changed
to the maximum (FE), the center (80), and the
minimum (00), measure the picture period amplitude
of pin 14.
Calculate the maximum and minimum amplitude
ratios in relation to the drive center in decibels.
(DRG +, DRG—)
, Repeat steps Z1; to {’3 above with the subaddress (07)
data and pin 15 instead of 14. (D_‘RBV+, DRB—)
#11 Input Impedance
Adjust the external power supply Qoltage until the
ammeter reads 0.
When the pin 11 voltage is increased by 0.2V,
measure the ammeter current.
Zin11(Q) = 0.2 (V) + i (A)
ACL Characteristics
Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp_p) to pin 54.
v Measure the picture period amplitude of pin 13
(VACL1)-
‘ Apply -0.5V DC to pin 11 from an external power
supply and measure the picture period amplitude of
pin13- (VACL2)
Apply —1 V DC to pin 11 from an external power
supply and measure the picture period amplitude of
pin 13. (vAch)
ACL1 —20 X 609(VACL2/VACL1)
ACL2 —20 X {09 (VACL3 /VAC|_1)
TA131OAN~63
TOSHIBA
TA131OAN
2000-04-10 64/104
(TEST CONDlTIONS VCC = 5V and 9V, Ta = 25 1' 30C)
SW MODE & SUB ADDRESS & DATA
503 504 535 506 507 508 S09 S10 554
MEASUREMENT METHOD
ABL Point
A A A OFF A A A OFF C ’4‘:
, Measure the DC voltage of pin 11 (VABL1)
Set the subaddress (04) data to (83).
Set the subaddress (00) data to (3F). Apply external
voltage to pin 11, decrease the pin voltage from 6.5 V.
When the voltage of pin 13 starts to change, measure
the voltage of pin11. (VABLZ)
Change the subaddress (00) data to (7F), (BF), and
(FF), and repeat step 33 for each of these data.
(VAB L3: VABL4- VABLS)
’ ABLP1 = VABLZ — VABL1
ABLP2 VABL3 * VABL1
ABLP3 VABL4 — VABL1
ABLP4 = VABLS — VABL1
ABL Gain
je i“! m
A A A OFF A A A OFF C
1 ABLG1
Apply 6.5V from an external power supply to pin11.
~. Set the subaddress (00) data to (3F).
Set the brightness to the maximum.
/ Measure the voltage of pin 13 (VABL6)
.‘ Apply 5V from the external power supply to pin11.
- Change the subaddress (04) data to (80), (81), (82),
and (83), and repeat step 4 for each of these data.
(VABL7I VABL8: VABL9: VABL10)
VABL7 _ VABLG
VABL8 _ VABL6
VABL9 " VABLG
VABL10 _ VABL6
BLK Off Mode
7 Set the subaddress (01) data to (40) and check that
the blanking of pins 13, 14, and 15 is turned off.
TA131OAN—64
TOSHIBA
TA131OAN
2000-04-10 65/104
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 30C)
SW MODE 8: SUB ADDRESS 8: DATA
503 504 $05 506 S07 508 509 510 554
MEASUREMENT METHOD
Analog RGB Gain
3 B B ON A A A OFF C
:- lnput signal 1 (f = 100 kHz, picture period amplitude
, Measure the picture period amplitude of pin 13 (v13R)
‘ As in steps 21,) and <21 above, input to pin4 and
= 0.2 V,,.,,) to pin 3.
measure pin 14 (V146), then input to pin 5 and
measure pin 15 (V153).
v13R/0.2
V14G/0-2
v153/0.2
Analog RGB
Frequency
Characteristics
B B B ON A A A OFF C
. Input signal 1 (f = 8 MHz, picture period amplitude
' Measure the picture period amplitude of pin 13.
, As in steps 511‘ and 12,» above, input to pin4 and
. Calculate the frequency characteristics from the above
= 0.2 Vp_p) to pin 3.
(v13R 8 MHz)
measure pin 14, then input to pin 5 and measure pin
15. (V14G 8MHZ, V153 8MHZ)
results and the results obtained in T26.
GfTXR 20 X 809 (v13R 8 MHz/v13R)
GfTXG 20X€og (V146 8MH2/v146)
GfTXB = 20 X {’09 (V153 8 MHZ/v15B)
Analog RGB Input D
B B 8 ON A A A OFF C (47
' Set the subaddress (00 : unicolor) data to min (00).
.. Input signal 2 to pin 3 and gradually increase picture
When the voltage during the picture period of pin 13
amplitude A.
stops changing, measure picture amplitude A (DR13).
Repeat steps (2) and (3) above under the following
conditions :
Input to pin 4, measure the voltage during the picture
period of pin 14 (DR14).
Input to pin 5, measure the voltage during the picture
period of pin 15 (DR15).
TA1310AN—65
TOSHIBA
TA1310AN
2000-04-10 66/104
(TEST CONDITIONS Vcc
= 5V and 9V, Ta = 25i3°C)
SW MODE & SUB ADDRESS & DATA
510 554
MEASUREMENT METHOD
Analog RGB White
Peak Slice Level
Input signal 2 to pin 3. Gradually increase the picture
period amplitude A.
; When pin 13 is clipped, measure the picture period
amplitude of pin 13.
As in steps f1") and 1'2) above, input to pin4 and
measure pin 14, then input to pinS and measure pin
Analog RGB Black
Peak Limiter Level
‘> Apply an external power supply to pin 3. Gradually
decrease the voltage from 5V DC. When pin 13 is
clipped, measure the voltage of pin13.
As in step 7]) above, apply to pin4 and measure pin
14, then apply to pin 5 and measure pin 15.
Analog RGB Contrast
Adjustment
Characteristics
2‘ Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 vp.p) to pin 3.
When the subaddress (00, unicolor) data are changed
to the maximum (3F), the center (20), and the
minimum (00), measure the picture period amplitude
of pin 13.
(vuTXR1, vuTXRZ, vuTXR3)
Calculate the maximum and minimum amplitude
ratios in decibels.
, As in steps :1), ‘21 and 3 above, input signal 1 to pin
4 and measure pin14, then input signal 1 to pin 5
and measure pin15.
Analog RGB
Brightness
Adjustment
Characteristics
J- ‘N‘
3 Input signal 2 to pins 3, 4, and 5.
Adjust the signal 2 amplitude A so that the picture
period amplitude of pin 13 is 0.5 Vpep.
When the subaddress (05, RGB brightness) data are
changed to the maximum (F8), the center (88), and
the minimum (08), measure the picture period
amplitudes of pins13, 14, and 15.
(vbrTXL vbrTx2, vbrTx3)
TA1310AN—66
TOSHIBA
TA131OAN
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i‘ 3”C)
SW MODE & SUB ADDRESS & DATA
504 505 506
MEASUREMENT METHOD
Analog RGB Mode
On Voltage
A A OFF
Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp.p) to pin 3.
, Apply an external power supply to pin 6. Gradually
increase the voltage from 0V.
, When signal 1 is output to pin 13, measure the
voltage of pin 6.
Analog RGB Mode
Transfer
Characteristics
A A OFF
7 Set the subaddress (05, R68 brightness) data to the
maximum (F8).
Input signal 3 (signal amplitude 4.5 Vp-p) to pin 6.
‘ Measure the switching transfer characteristics of pins
13, 14, and 15 according to diagram T-2.
Using the data obtained from the above
measurements, calculate the maximum axis difference
between the rising and falling edges of transfer delay
Crosstalk from Video
to Analog RGB
, Input signal 1 (f = 4MH2, picture period amplitude
= 0.5 vp_p) to pin 54.
1 Adjust the input amplitude 50 that the picture period
amplitude of pin 13 is 2Vp_p.
Turn SW6 on.
Measure the picture period amplitude (Vp.p) of pin 13.
(V13A)
, Calculate by the following formula the amount of
crosstalk from the video to the analog RGB.
Vv >AR = —20 X 609 (V13A/2)
Repeat steps 4 and 55“ above on pins 14 and 15.
2000-04-10 67/104
TA1310AN—67
TOSHIBA
TA131OAN
2000-04-10 68/104
NOTE ITEM
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 3“C)
SW MODE 8: SUB ADDRESS & DATA
503 504 505 506 S07 508 S09 510 S54
MEASUREMENT METHOD
T Crosstalk from
36 Analog RGB to Video
8 B B or A A A OFF c
(V 1‘;
Turn SW5 one
Input signal 1 (f = 4MH2, picture period amplitude
= 0.5 Vp_p) to pin 3.
5 Adjust the input amplitude so that the picture period
amplitude of pin 13 is 2Vp_p.
F Turn SW6 off.
Measure the picture period amplitude (Vp_p) of pin 13.
(V133)
‘ Calculate by the following formula the amount of
crosstalk from the analog R68 to the video.
vA —> AR = —20 XA€og (v13B/2)
. As in steps 2 to {6: above, input to pin4 and
measure pin 14, then input to pinS and measure pin
T37 Analog OSD Gain
A A A OFF B B B ON C
i Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp_p) to pin 7.
‘ Measure the picture period amplitude of pin13. (v13R
’7 As in steps :1) and f2; above, input to pin8 and
measure pin14, then input to pin9 and measure pin
15- (V146: V153)
‘ GOSDR = V13R/0-2
v14G/0.2
V15B/0.2
Analog OSD
T33 Frequency
Characteristics
A A A OFF B B 8 ON C
‘ Input signal 1 (f = 8MH2, picture period amplitude
> Measure the picture period amplitude of pin13.
(v13R 8MH2)
; As in steps \11 and 42? above, input to pin8 and
measure pin14, then input to pin9 and pin15.
(V146 8MHz, V153 8MH2)
7 Calculate the frequency characteristics from the above
results and the results in T37.
F GfOSDR = 20 X fog (V13R 8 MHZ/V13R)
20 X €09 (V146 8 MHZ/V14G)
20 X fog (v155 8 MHz/v153)
Gfosoe
Gfospa
TA1310AN—68
TOSHIBA
TA131OAN
2000-04-10 69/104
NOTE ITEM
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 33C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
Analog OSD Output
T39 Level
When 0V (DC) is input from an external power supply
to pin 7, when 7.5V is input to pin 7, and when no
external voltage is applied to pin 7, measure the
picture period amplitude of pin 13.
(VOSD1R-VOSD2RIVOSD3W
I As in step {1.3 above, input to pin8 and measure pin
14, then input to pin9 and measure pin 15.
(VOSD1GIVOSDZGIVOSD3G)
(V05013.V05023.Voso33)
Analog OSD Mode
40 On Voltage
Input signal 1 (f = 100 kHz, picture period amplitude
= 0.2 Vp_p) to pin 7.
f Apply an external power supply to pin 10. Gradually
increase the voltage from 0V.
,1 When signal 1 is output to pin 13, measure the pin1O
voltage.
Analog OSD Mode
T41 Transfer
Characteristics
» Apply 2.5 V from an external power supply to pins 7,
8, and 9.
Input signal 4 (signal amplitude = 4.5 Vp_p) to pin 10.
Measure the switching transfer characteristics of pins
13, 14, and 15 according to diagram T»2.
Using the data obtained from the above
measurements, calculate the maximum axis difference
between the rising and falling edge of the transfer
delay time.
RGB Output Self—
42 DlagnOSIS
. Set the bus control data to read mode and reset.
Set to read mode again.
7 Check that the read mode parameter (RGB-OUT) is 0
(error).
Measure the voltage of pin 54 and apply that voltage
+0.7V to pin 53 using an external power supply.
I Set to read mode again.
‘ Check that the read mode parameter (RGB~OUT) is 1
TA1310AN—69
TOSHIBA
TA1310AN
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 33C)
NOTE ITEM SW MODE 8: SUB ADDRESS & DATA
313 504 505 $06 507 508 509 510 554
MEASUREMENT METHOD
1]?) Input signal 1 (f = 100 kHz, picture amplitude 0.2 Vp_p)
to pin 53 and adjust drive data so that the picture
period amplitude of pins 14 and 15 equals that of pin
<2) Set SW54 to C.
(3} Measure the voltages on pins 17, 18, and 19 and
apply the measured voltages to the pins from an
external power supply.
(4.“ Set the subaddress (11) data to (50).
15;" According to the voltage on pins 13, 14, and 15 in
Figure 1 below, determine the phase of ACE input
pulse.
Note : The phase starts after the VvBLK period. The
picture period after the falling edge of FBP
input is 1 H; then, every time H-BLK ends,
the period is 2 H, 3 H, and so on.
16> According to pins 13, 14, and 15 the voltage on,
determine the ACB input pulse amplitude (amplitude
from the BLK level at RGB—BLK OFF).
ACB input pulse"~]:_—__
amplitude
V'BLK period? 11H
Fugure 1 RGB Output:
ULHJLILM
Figure 2 FBP Input (#34)
ACB Input Pulse
A A A OFF A A A FF
Phase, Amplitude O or
3H: :4H
TOSHIBA
2000-04-10 70/104
TA1310AN—70
TA1310AN
2000-04-10 71/104
NOTE ITEM
(TEST CONDITIONS Vcc = 5v and 9v, Ta = 25 i 3”C)
SW MODE & SUB ADDRESS & DATA
504 505 506 507 $08 509 510 $54
MEASUREMENT METHOD
T44 ACB Clamp Current
A A OFF A A A OFF C
,7 Repeat the measurements in steps (’11) and (21 above
Set pin 17 to open, connect a 1—kQ resistor to the
pin, and apply 3V to the pin from the power supply.
When the subaddress (11) data are set to (10), (30),
(50), and (70), measure from the waveform of pin 17
the current flowing to GND during the clamp period.
(|17a, |17b, l17c |17d)
0n pins18 and 19.
U18a,|18b,|18c 118d)
(|19a, |19b, 119: |19d)
T45 IK Input Amplitude
A A OFF A A A OFF C
(rr) kr;
/ Connect TP13 to TP13b; TP14 to TP14b; TP15 to
TP15b.
Set SW20 to b.
Set the subaddress (11) data to (50).
By referring to Figure 1 of T43, determine the voltage
output from pins 13, 14, and 15 (IKR, IKG, IKB) during
the ACE pulse input to the signal input to pin 20.
TA1310AN—71
TOSHIBA
TA1310AN
2000-04-10 72/104
(TEST CONDITIONS Vcc = 5V and 9V, Ta = 25 i 3°C)
SW MODE & SUB ADDRESS & DATA
504 505 506 S07 508 S09 S10
MEASUREMENT METHOD
R63 7 Correction
Characteristics
A A OFF A A A OFF
3],,- lnput a ramp waveform to pin 54 (Y IN) and adjust
the input amplitude 50 that the picture period
amplitude of pin 13 is 2.5 Vp_p.
5'2.) Adjust the drive adjustment data so that the picture
period amplitudes of pins 14 and 15 are equal to that
of pin 13.
('37 Set the subaddress (13) data to (81).
{4; Using pins 13, 14, and 15, calculate the R687 start
point and its gradient (in decibels) in relation to the
off point, using Fig.1 below.
Output amplitude (IRE)
2.5 Vp-p
~ Input amplitude
100 “R“
TA1310AN—72
TOSHIBA
TA1310AN
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 3“C)
SW MODE & SUB ADDRESS 8: DATA
504 S05 506 S07 508 509 $10
MEASUREMENT METHOD
<1) Input a sync signal to pin 38.
(2? Input a ramp waveform (1.25 Vp_p) to pins 7, 8, and 9
2000-04-10 73/104
VK Output
47 Characteristics
during the picture period.
Ouxput waveform (Vpgp)
B B B OFF C
Input waveform (Vp.p)
Time (us)
1.25 Vp—p
Time (|Js)
TA1310AN—73
TOSHIBA
TA1310AN
2000-04-10 74/104
SYMBOL
SW MODE & SUB ADDRESS & DATA
(TEST CONDITIONS VCC = 5 V and 9V, Ta = 25 i 3°C)
503 504 505 506 S07 508 S09 510 S54
MEASUREMENT METHOD
Protection
Circuit
Operating
monitor 1
A A A OFF A A A OFF
(,3 ‘I
Set the subaddress (11) data to (A0).
, Apply 8.0V to pin 17.
Monitor pin 13 and confirm that the picture period has not
dropped to the BLK level (ACBPR).
Monitor pin 14 and confirm that the picture period has not
dropped to the BLK level (ACBPG)
Protection
Circuit
Operating
monitor 2
ACBBRAR
ACBBRAG
A A A OFF A A A OFF
Set the subaddress (11) data to (C0).
Apply 8.0V to pin 17.
Monitor pin 13 and confirm that the picture period is at the
BLK level (ACBBRAR).
Monitor pin 14 and confirm that the picture period is at the
BLK level (ACBBRAG)
Protection
Circuit
Operating
monitor 3
ACBBRLO
A1A AOFFAAAOFF
\ i 1:
Set the subaddreés (11) data to (C0).
Apply 6.8V to 9V VCC (pin 16).
Apply 6.8V TO pin 17.
Monitor pin 13 and confirm that the picture period has not
dropped to the BLK ievel (ACBBRLO)
Base Band
Adjustment
Characteristics
ANG RMIN
ANG BMIN
ANG RMAX
ANG BMAX
552 SS3 —
A A A OFF ON ON — OFF
"/-lrrr_'?'
a Change subaddress (05) H to (81) H.
1 Set unicolor = max ; bright = max ; color = center.
Input signal 1 (f0 = 100 kHz, 100 mVp_p) to pin 53.
' To pin 52, input a signal with the same amplitude but 90°C
phase advanced compared to the signal input to pin 53.
: When subaddress (14) H is changed to (CO) H —> (80) H,
measure the amount of change in the output phase of pin
13. (ANG RMIN)
Under the same conditions as 5) above, measure the amount
of change in the output phase of pin 15. (ANG BMIN)
When subaddress (14) H is changed to (CO) H —> (FF), measure
the amount of change in the output phase of pin 13. (ANG
> Under the same conditions as .17;. above, measure the amount
of change in the output phase of pin 15. (ANG BMAX)
TA1310AN—74
TOSHIBA
TA131OAN
2000-04-10 75/104
NOTE ITEM
SYMBOL
SW MODE & SUB ADDRESS 8: DATA
(TEST CONDITIONS VCC = 5V and 9V, Ta = 25 i 36C)
\ MEASUREMENT METHOD
Base Band
Adjustment
Position
BUS BO
I Change subaddress (05) H to (81) H.
Set unicolor = max ; bright = max ,' color = center.
Relative amplitude, phase switching: Change subaddress (12)
H to (00).
Input signa|1 (f0 = 100 kHz, 100 mVp-p) to pin 53.
To pin 52, input: a signal with the same amplitude but 90°C
phase advanced‘compared to the signal input to pin 53.
,- Changing subaddress (14) H from (CO) H, read the
transmission data at subaddress (14) H when the output
phase of the pin 15 signal is the same as the input phase of
the pin 53 signal. (BUS BO)
TA1310AN—75
TOSHIBA
TA1310AN
2000-04-10 76/104
Deflection stage
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i 3°C, BUS DATA = POWER-ON RESET)
SW MODE
SW34 SW38
MEASUREMENT METHOD
Sync Separation Input
Sensitivity Current
When the number of H periods in the #33 (VD out) waveform changes from
297 to 225, increase the voltage from 3V and measure the value at (A) in the
diagram.
V Separation Filter
Pin Source Current
When the subaddress (0D) D1 is set to (1), measure the value at {61“ in the
diagram.
(DEF Vcc)
V Separation Level
(Sync .n] #38 When #38 (Sync in) is connected to GND, measure the #39 (VSEP FILTER)
H voltage.
(DEF VCC)
H AFC Phase
Detection Current
H AFC Phase
Detection Current
(AFC1 Hum) #40 Set the voltage to around 7.5V, equivalent to when #40 (AFC1 FILTER) has
® I no load. When a signal as shown in the diagram below is input to #38 (Sync
in) from TG7, calculate V1 and V2 using the #40 waveform.
ll V (around 7.5V) 63.5ps
'DET = V1+1kQ(}1A) I
—» 4.7m ovzsv
AIDET = (v1/v2 — 1) X 100 (%) 1
Phase Detection Stop
Period
Input a composite video signal to #38 and measure the V mask period of the #40 (AFC1 FILTER)
waveform.
TA1310AN—76
TOSHIBA
TA1310AN
2000-04-10 77/1 04
DS : Phase detection stop period TA1310AN
Fie.d 7 .——. Fleld l
7§8H 759H 760H 761H 767H 1H 2H 3H
signal
Fxcld 1H Field 7
259H ZSDH 261H ZEIZH 263H‘ 1H 2H 3H 5H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H ISH 16H 17H 18H 19H 10H
IIIHIHUHHHH"
signal
1A1310AN—77
TOSHIBA
TA1310AN
2000-04-10 78/104
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i 3°C, BUS DATA = POWER—ON RESET)
SW MODE
MEASUREMENT METHOD
32*fH vco
Oscillation Start
Voltage
Increase the voltage from 2.5V.
When an oscillation waveform appears on TP41, measure the voltage. At the
t v same time, check that no waveform is output (0V DC) to #35 (H out).
; ' (Apply only DEF VCC.)
(32 fh vco)
503F30
(DE F Vcc) #37
Probe observation
Horizontal Output
Start Voltage
Increase the voltage. When a horizontal pulse appears on #35 (H out),
measure the voltage. Note that the horizontal oscillation frequency at this
#37 time is near fHO (15.7 kHz i1kHz).
(Apply only DEF VCC) A
V {1,7 Under the above conditions, when no horizontal pulse is output on #35,
read D4 in bus read mode. (Apply also the chroma VCC-) (VBUS HOFF)
52) Under the above conditions, when a horizontal pulse is output on #35,
read D4 in bus read mode. (Apply also the chroma VCC) (VBUS HON)
[DEF Vcc)
Horizontal Output
Pulse Duty
Observe the #35 (H out) waveform and measure t1 and t2.
t1 x100(%)
T = __
H35 t1 + t2
Phase Detection Stop
Input a composite video signal to TP38. When the subaddress (0D) D1 is set to (1), measure the
oscillation frequency of the #35 (H out) waveform.
Horizontal Free-Run
Frequency
Measure the oscillation frequency of #35 (H out).
Horizontal Oscillation
Frequency Range
5]) When #40 (AFC1 FILTER) is connected to DEF VCéAT/ia a 10-kQ resistor, measure the #35 (H out)
oscillation frequency. (VHMIN)
”2,1 When #40 (AFC1 FILTER) is connected to GND via a 68—kQ resistor, measure the #35 (H out)
oscillation frequency. (VHMAX)
Horizontal Oscillation
Control Sensitivity
When the voltage on #40 (AFC1 FILTER) is varied by i'OOSV with a horizontal oscillation
frequency of 15.734 kHz, calculate the #35 (H out) frequency variation rate.
TA131OANk78
TOSHIBA
TA1310AN
2000-04-10 79/104
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i 3°C, BUS DATA = POWER—ON RESET)
SW MODE
SW34 SW38
MEASUREMENT METHOD
Horizontal Output
Voltage
{1} Measure the high-level voltage of #35 (H out) (when #35 is connected to GND via a 481—9
resistor). (VH35)
2) Measure the Iow-Ievel voltage of #35 (H out) (when #35 is connected to GND via a 48149
resistor). (VL35)
Supply Voltage
Dependence of
Horizontal Oscillation
Frequency
When the #37 (DEF VCC) voltage is varied from 8.5V, to 9.5V, measure the variation in the #35
(H out) oscillation frequency.
Temperature
Dependence of
Horizontal Oscillation
Frequency
When the temperature is varied through the range —20”C to +60°C, measure the variation in the
#35 (H out) oscillation frequency.
Horizontal Sync Phase
535 L15
#38 input signal
(Sync in)
a—> ‘—4.7us
a/2—> ‘—
#40 waveform PH)
(AFC1 FILTER)
—' 5pm
#34 input signal
(FBP in)
When a signal as shown at left is input to
TP38 from TG7, measure the phase
difference of the #34 (FBP in) waveform in
relation to the #40 (AFC1 FILTER) waveform
(SpH1). Also measure the phase difference
of the #40 waveform in relation to the
center of the input horizontal sync signal
(5PH2)-
Horizontal Picture
Phase Adjustment
63.5 115
#40 waveform
At (00000) —
#34 input
signal
(FBPin) _|
A! (11111)
‘— L‘HSFT
Under the above conditions, when the
subaddress (08) D7 to D3 are varied from
(00000) to (11111), measure the phase
variation in the #34 (FBP in) waveform.
TA1310AN—‘79
TOSHIBA
TA1310AN
2000-04-10 80/104
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 i 3°C, BUS DATA = POWERAON RESET)
SW MODE
SW34 SW38
MEASUREMENT METHOD
Horizontal Blanking
Pulse Threshold
IVHBLK
Decrease the amplitude of #34 (FBP in)
from 9Vp4p. When AFC2 stops locking,
measure the amplitude. (VHBLK1)
Increase the amplitude of #34 (FBP in) from
0Vpto #13 (R in), measure the amplitude.
(VHBLKz)
Curve Correction
(Curve correction)
Input a signal as shown below to TP38 from TG7. When the voltage is varied
#34 Input
signal
#40 waveform
(AF’C‘I FILTER)
from 3V to 6V, measure the phase variation in the #34 (FBP in) waveform.
‘— AH42
H Cycle Black Peak
Detection Disable
#38 input signal
(Sync m)
#40 waveform
(AFC1 FILTER)
#32 input signal
(HD out)
(FBP in)
| 63.5 us
j_l—— “ [As
‘—HBPS
Set the subaddress (01) D7 to (0), set the
subaddress (05) D3~D1 to (010), and set the
subaddress (0C) D0 to (1).
When a signal as shown at left is input to
TP38 from TG7, measure the #32 (HD out)
waveform phase difference HBPS and pulse
width HBPW in relation to the #40 (AFC1
FILTER) waveform.
Threshold of External
Black Peak Detection
Disable Pulse
(HD out)
#32 Set the subaddress (02) D7 to (1).
Increase the voltage from 0V. When #52 reaches 3.4V DC, measure the voltage.
\ TA1310AN*80
TOSHIBA
TA1310AN
2000-04-10 81/104
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i 3°C, BUS DATA = POWER—ON RESET)
SW MODE
SW34 SW38
MEASUREMENT METHOD
Clamp Pulse Start
Clamp Pulse Width
(R i“) #13
Set the subaddress (01) D7 to (0), set the subaddress (05) D3~D1 to (010),
and set the subaddress (0C) DO to (1).
635 ps
#38 input signal
(Sync in)
4.7 ps
#40 waveform
(AFC1 FILTER)
CPS —~
cpw —~
#32 waveform
(HD out)
Input a signal as shown at left to TP38
from TG7, then measure the #32 (HD out)
waveform phase difference CPS and pulse
width CPW in relation to the #40 (AFC1
FILTER) waveform.
HD Output Start
HD Output Pu|se
HD Output
Amplitude
63.5 p;
#38 input signal
(Sync in)
#40 waveform
(AFC1 FILTER)
#37 waveform
(HD out)
Input a signal as shown at left to TP38
from TG7, then measure the #32 (HD out)
waveform phase difference HDS and pulse
width HDW and VH0 in relation to the #40
(AFC1 FILTER) waveform.
Gate Pulse Start
Gate Pulse Width
63.5 ILls
#38 input signal
(Sync in)
‘—4.7 ps
#40 waveform
(AFC1 FILTER)
#34 output
waveform
(FBP in)
Input a signal as shown at left to TP38
from TG7, then measure the #34 (FBP in)
waveform phase difference GPS and pulse
width GPW in relation to the #40 (AFC1
FILTER) waveform.
TA1310AN—81
TOSHIBA
TA1310AN
2000-04-10 82/104
024 : Gate pulse V mask period TA1310AN
Held 2 0—»: Field 1
258H ZSBH ZEOH ZBIH ZS7H§ 1H 2H 3H . 4H 5H 6H 7H 8H 9H IDH HH 12H \BH 14H 15H 16H 17H 18H 19H 20H 21H 22H 1}” 74H 75H 76H 27H 28H
Signal
5 Tcoz i
wavetmm
Held w «e» Held 7
?SOH ?GIH 262H 253“ 1” 2h - 3H 4H 5H 6H 7H 8H 9H ‘0H 11H 12H 13H 14H 15H 16H ‘7H 18H ‘9” 70H 71H 73H 73H 24H 25H 26H 27H 28H
Video signal
‘ rm 3 z 1 a s 5 g
#34 waveform
TA131DAN—82
TOSHIBA
TA1310AN
2000-04-10 83/104
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i 3CC, BUS DATA : POWER—ON RESET)
SW MODE
MEASUREMENT METHOD
Gate Pulse V Mask
Period
Input a composite video signal to TP38, observe the #34 (FBP in) waveform, and measure the V
Sync Out Low Level
Input a composition video signal to TP38,
observe the #36 (Sync out) waveform, and
measure the low level of the sync period.
#36 waveform
(Sync out)
mask period.
Li I i—l
Vertical Oscillation
Start Voltage
Increase the voltage from 0V. When a pulse is output from #33 (VD out),
measure the voltage.
(Apply only DEF VCC)
(DEF Vcc)
Vertical Free«Run
Frequency
Measure the frequency of #33 (VD out).
Vertical Output
Voltage
{11’ Measure the high level voltage of the #33 (VD out) waveform. (VVH)
2 Measure the low level voltage of the #33 (VD out) waveform. (VVL)
Service Mode
Switching
When the subaddress (0C) Do is set to (1), check that the #27 (V.Ramp) waveform is iow (3.4V
Vertical PulI—ln Range
Input a composite video signal to TP38, vary the vertical frequency of this signal in 0.5-H steps, and
measure the vertica| pulI-in range.
Vertical Frequency
Forced 263H
Vertical Frequency
Forced 262.5H
<1? Measure the number of H periods of #33 (HD out) when the subaddress (OD) D1 and D0 are set
to (10). (fv1)
«'2‘» Measure the number of H periods of #33 (HD out) when the subaddress (0D) D1 and DO are set
to (11). (fvz)
Vertical Blanking Off
Set the subaddress (01) D7 to (1) and check that no vertical or horizontal blanking pulse is applied
to #13 (R out), #14 (G out), or #15 (B out).
TA1310AN~83
TOSHIBA
TA1310AN
2000-04-10 84/104
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 :1: 3°C, BUS DATA = POWER-ON RESET)
SW MODE
MEASUREMENT METHOD
Vertical Output Pulse
Input a composite video signal to TP38, then measure the #33 (VD out) vertical pulse delay TD and
pulse width TW in relation to the vertical sync signal of #38 (Sync in).
R63 Output Vertical
Blanking Pulse Start
RGB Output Vertical
Blanking Pulse Stop
Input a composite video signal to TP38, then measure the #13 (R out) waveform phase difference
VR51 and pulse width VRSZ in relation to the #38 (Sync in) waveform.
Repeat measurement on #14 and #15.
Set the subaddress (11) D4~D1 to (1111) and the subaddress (12) D4~D1 to (1111).
V Cycle Black Peak
Detection Disable
Pulse (Normal)
Input a composite video signal to TP38 and measure the V cycle black peak detection disable pulse
period of #55 (BLACK PEAK DET).
V Cycle Black Peak
Detection Disable
Pulse (Zoom)
Under the conditions in DB8 above, set the subaddress (0C) D1 to (1) and measure the V cycle
black peak detection disable period of #55.
TA131UAN—84
TOSHIBA
TA1310AN
2000-04-10 85/104
D34 : Vertical output pulse width, vertical output pulse phase variation. and vertical output pulse phase range
OH ‘H 2H 3H 4H 5H 6H 8H 9H 10H 11H 12H 13H 14H 15M 16M
11H 2 DH : 13H i MH ; 15H 5 16H : 17H ¢ IBH 19H
PFUlHJH
Vldeo signa' E A
H;5H§6H§7H§8H§9H;10 ._
W“ lllllllll ll
Held 2
{r33 waveform
D35 : RGB output venical blanking pulse start and stop phases
new 2.4—. FIPId v
ZS8H ZS9H 260H )6”! ?EPH 1H 7H 3H AH 5H 6H 7H 8H 9H YOH 11H 12” 13H 14H 15H 16H 17H ‘EH 19H 20H 71H 77F 73H 74H 75H 76H 77H 78H
"UUHHHH
VF€s7 -VC€‘-7 AVES7 “:
Video signal
#13114115
waveform
Held 19—. Fveld 7
259M ZSOH 76|H 262H ZESHE 1H 1H 3H 4H SH 5“ 8H 9H 10H “H ”H 13H 14H 15H 16H 17H 18H 19H 20H 21H 22” IBM 24H 25H 26H 27H
HHUHHHU
i‘—VR ,VG ,vri : 1 : : ‘ : _ . ‘ E I '
V 351 151 :sw E E . . . . ‘ V . . 3 “52 rVCISZ yvfifiz .5
VIdEO swgnav
#13 ,- 14,, 15 ’ ' ' ' '
waveform
TA1310AN485
TOSHIBA
TA1310AN
2000-04-10 86/104
D36 : Video mute period (normal)
Field 2 to field 1
deeo Signal
#13 waveform
PMwmri : . 1
Field 1 to field 2
256H ?57H 258H 259H ZGOH
26H 27H 28H 29H 30H
Video Signal
#13 wavefol m
D37 : Video mute period (zoom)
Field 2 to field 1
227H 228H 229H ZSOH 231H 232H 3H 4H 21H 22H 54H 55H 56h 57H 58H 59H
Vvdeo signal
#13 waveform
Field 1 to field 2
228H 229H 230H 231H 232H 2H 3H 4H 21H 22H 54H 55H 56H 57H 58H
Video swgna:
#13 waveform
PMIoom
TA1310AN786
TOSHIBA
TA1310AN
2000-04-10 87/104
D38 : V cycle black peak detection disable pulse (normal)
Field 2 to field 1
257H 258H 759M 260H
Video signal
#55 waveform ‘
l ‘ I n . I . . I . v ‘ . i . 1
Field 1 to field 2
256H 257H ZSSH 259H 260H 261H 262H 23H 24H 25H 26H 27H 28H 29H 30H
Video signal
#55 wavelorm
§ va Pcom p
D39 : V cycle black peak detection disable pulse (zoom)
Field 2 to field 1
227M 228H 229H 230H 231H 232H 233H
Video sygnal
#55 waveform‘
VBonom
Field 1 to field 2
228H 229H 23OH ?31H 232H 233H 234H 51H 52H 53H 54H 55H 56H 57H 58H
Video sugnal
#55 waveform
TA1310AN487
TOSHIBA
TA1310AN
2000-04-10 88/104
Deflection correction stage
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 i 3°C, BUS DATA = POWER—ON RESET)
SW MODE
MEASUREMENT METHOD
Vertical Ramp
Amplitude
Measure the amplitude of the vertical ramp wave on #27.
Vertical Amplification
Vertical Amp
Maximum Output
Voltage
Vertical Amp
Minimum Output
Voltage
Set #24 and #25 to open.
Set the subaddress (0C) data to (81).
Connect #25 to an external power supply. When the
voltage is varied from 5.5V to 6.5 V, measure the vertical
amplification on the #24 voltage.
(Gv) (VH24) (VL24)
VH24 ...................
.w = swam
20 X |og(JV#24/J#25)
#25 DC
Vertical Amp
Maximum Output
Current
Set #24 and #25 to open.
Apply 7V to #25 from an external source.
Insert an ammeter between #24 and GND, and measure the
current.
Vertical NF Sawtooth
Wave Amplitude
Measure the amplitude of the #25 waveform (vertical
sawtooth waveform).
Vertical Amplitude
When the subaddress (0C) data are set to (00) and (FC), measure the amplitudes of the #25
waveform (vertical sawtooth waveform) Vp25(00) and szs (FC)-
VP25 FC —VP25 00 X10“
VP25 (FC) + VP25 (00)
TA1310AN—88
TOSHIBA
TA1310AN
2000-04-10 89/104
NOTE ITEM
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i 3°C, BUS DATA = POWER—ON RESET)
SW MODE
MEASUREMENT METHOD
Vertical Linearity
Gg Correction Maximum
Set the subaddress (0E) data to (F8). Change the subaddress (10)
D7~ D4 so that the #22 parabola waveform is symmetrical.
Set the subaddress (0E) data to (00).
When the subaddress (0F) data are (80), measure the #25
waveform V1 (80) and V2 (30).
Likewise, when the subaddress (OF) data are (00) and (F0),
measure V1 (00), V2(00)r V1(F0): and V2 (F0)-
VI = : V1(00)‘ V1(F0) + V2(F0)"V2(00)
2 X (V1 (80) + V2 (80))
Vertical S Correction
9 MaXImum Value
Set the subaddress (0E) data to (F8). Change the subaddress (10)
D7~D4 so that the #22 parabola waveform is symmetrical.
Set the subaddress (0E) data to (00).
When the subaddress (0E) data are (80), measure the amplitude
of the #25 waveform V525 (80)-
Likewise, when the subaddress (0E) data are (87), measure the
amplitude of the #25 waveform V525 (87)-
V5 = i Vszs(80)—V525(87) ><1oo(%)
V525 (80)
V525 (87)
V525 (80)
TA131OAN—‘89
TOSHIBA
TA1310AN
2000-04-10 90/104
NOTE ITEM
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 'i' 3°C, BUS DATA = POWER—ON RESET)
SW MODE
MEASUREMENT METHOD
Vertical NF Center
G10 Voltage
Set the subaddress data (0E) to (F8). Change the subaddress (10)
D7~ D4 so that the #22 parabola waveform is symmetrical.
Set the subaddress data (0E) to (00).
Measure the center voltage VC of the #25 waveform.
Vertical NF DC
611 Change
Under the conditions in G10 above, set the subaddress (13) data to (80) and measure the vertical NF
center voltage VC (80)- .
Next, set the subaddress (13) data to (00) and measure the vertical NF center voltage VC(00)-
Voc = i Vc (00) — Vc (80) (V)
Vertical Amplitude
G12 EHT Correction
Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4
so that the #22 parabola waveform is symmetrical.
Set the subaddress (0E) data to (00).
Connect #28 to GND and measure the amplitude of the #25 waveform
VEHT(0V)-
Connect #28 to a S-V power supply and measure the amplitude of the
#25 waveform VEHT (5 V)-
VEHT (5 V) — VEHT (0 V)
VEHT (5 V)
VEHT = X 100(%)
TA1310AN—90
TOSHIBA
TA1310AN
2000-04-10 91/104
NOTE ITEM
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i 30C, BUS DATA = POWER-ON RESET)
SW MODE
MEASUREMENT METHOD
G E-W NF Maximum DC
13 Value (Picture Width)
G E-W NF Minimum DC
14 Value (Picture Width)
Set the subaddress (0E) data to (F8). Change the subaddress (10)
D7~D4 so that the #22 parabola waveform is symmetrical.
Set the subaddress (0E) data to (00).
Set the subaddress (OD) data to (00) and measure the #22 voltage
Set the subaddress (OD) data to (FC) and measure the #22 voltage
Center
VH22 “" ----------------
VL22 l;
#22 waveform
E-W NF Parabola
G15 Maximum Value
(Parabola)
Set the subaddress (OD) data to (00) and the subaddress (0E) data to (F8).
Measure the amplitude of the #22 waveform (parabola waveform) VPB-
#72 waveform
TA1310ANV91
TOSHIBA
TA1310AN
2000-04-10 92/104
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i‘ 3"C, BUS DATA = POWER—ON RESET)
NOTE ITEM SW MODE
MEASUREMENT METHOD
Set the subaddress (0E) data to (F8). Change the subaddress (10)
D7~D4 so that the #22 parabola waveform is symmetrical.
Set the subaddress (10) D3~ D0 to (0) and measure the amplitude of
the #22 waveform VCR (0).
Likewise, when the subaddress (10) data are set to (F), measure the
E-W NF Corner #22 waveform amplitude VCR(F)-
Correction (Comer)
VCR = VCR (F) — VCR (0)
Vcn (F)
VCR (0)
TOSHIBA
Set the subaddress (10) data to (00) and measure the vertical NF
center voltage of the #25 waveform VC(00).
Likewise, when the subaddress (10) data are set to (FC), measure the
#25 voltage VC(FC)-
vTR = $_ch) _ VuFC) x100(%)
2 X VPZS //
Parabola Symmetry Vp25 Vc
17 Correction
TA1310AN — 92
TA1310AN
2000-04-10 93/104
TEST CONDITIONS (DEF VCC = 9V, Ta = 25 i' 3°C, BUS DATA = POWER-ON RESET)
SW MODE
MEASUREMENT METHOD
EVW Amp Maximum
Output Current
Connect an ammeter between #23 and GND.
Measure the current.
AGC Operating
Current 1
AGC Operating
Current 2
Measure the TP26 waveform peak value. (VAGCO)
Set the subaddress (06) D0 to (1) and repeat the
measurement. (VAGC1)
IAGCO = VX + 200 (HA)
(IAGC1) VX
(TP26 waveform)
Vertical Guard
Voltage
Set #25-t'o" open. Connect an external power supply to #25. Decrease the voltage from 5V. When
full blanking is applied to #13, measure the voltage.
E /W Output Self—
Diagnosis
Connect a 5 V external power supply to #23. Read D2 in bus read mode. (VBUS EWOFF)
When the external power supply connected to #23 is disconnected, read D2 in bus read mode.
Ensure that an E/W waveform is output from #22. (VBUS EWQN)
V-Out Output Self—
Diagnosis
Connect a 9-V external power supply to #24. Read 03 in bus read mode. (VBUS VOFF)
When the external power supply connected to #24 is disconnected, read D3 in bus read mode.
Ensure that a V—out waveform is output from #25. (VBUS VON)
Vertical Blanking
51:) Set the subaddress (0C) data to (81).
When the subaddress (11) D4~ D0 are changed from 0000 to 1111, check that the #13 blanking
stop phase begins. (VBLK1)
“'21 When the subaddress (12) D4~ D0 are changed from 0000 to 1111, check that the #13 blanking
start phase begins. (VBLKZ)
V Centering DAC
Output
a1, Set the subaddress (13) data to (00) and measure the #21 voltage V21L.
i2? Set the subaddress (13) data to (80) and measure the #21 voltage V21M.
‘3 Set the subaddress (13) data to (FE) and measure the #21 voltage V21H.
V NFB Pin Input
Current
Connect a 9-V VCC via a 100—kQ resistor to #25. Measure the sink
current on #25 according to the voltage difference of the 100-kQ 100m
resistance. : I & [I’lgv
|25 = V/100 kQ
TA1310AN-93
TOSHIBA
TA1310AN
TOSHIBA TA1310AN
co Input signal C-1
Burst signal
180° 150° 120° 90" 60° 30° o'' - 30° - 60° - 90°
a Input signal C-2
Sine wave frequency f0
a) Input signal C-3
Amplitude A
Fig.C Test signals for TA1310N chroma, color difference, and Y stage
2000-04-10 94/104
TOSHIBA TA1310AN
G) Video signal
63.5 [15
-Sine wave frequency f0
a Input signal 1
® Input signal 2 Amplitude A
Fig.T-1 Test signals for TA1310N text stage
2000-04-10 95/104
TOSHIBA TA1310AN
63.5 #5
20 ns 20 ns
20 ,us
(3) Input signal 3
(A) Input waveform
(B) Output waveform 1
(C) Output waveform 2
100% - _-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
90% _.-.-.-.-.-.-.-.-.-.-.--.-.-.-.-.-.-.-.-.-.-.-
50% _.-.-.-.-.-.-.-.-.-.-.-.-. --l _-.-.-.-.-.-.-.-. I -F--.-.-.-F-F-.-._
10% _.-.-.-.-.-.-.-.-.-.-.-.-. -l ................... I -.-.-.-.-.-._
Fig.T-2 Test pulses for TA1310N text stage
2000-04-10 96/104
TOSHIBA
TA1310AN
tDrs U
LD_Z <
Fer, E:
5.- No
“)3 alt.
um. OF
N‘; 's'F.
iis:f 2
u .- an
E - ct
oz ya,
tb 9.:
tb 9.3
I:0 Om
E oz}._|
x 'gtCi)-tu-y,
VO 0::
ycc C"
ElcT u
0;: gg
gz) U10:
--t-t Pgrtl
ciriOt I
N3dC) I q8dld
SZMS 0’ ty? t
on 75115
N on 38D!
[13 un 5
.s. Ts ' -
2 5,er
9dD i',
ttc',:.' F-.--t
Irt ','?, 53m 0 ®
It,) .
gé quu le (m
re-rc,-.-, rt
Jstl u
2223 ED
"lil un
qon D -
o ‘r - ons
'5; drrd , < mza 5
El) 010
' ure V
- 2 d0riro Al s
95 El) g 3023
33 jmo'o 3
t u) E
1: 29.3 Jrr'rirt) um) E At
" ul 10 ' , - t E
':''s"s<''''t ©
Ci? bN6 <
nggnjl' 0@EMSc /'lt Ct ©
'r, grit" o(VDLMSc
Ci) v -iir" E
s a la
SD m o.
.,. Jn’.‘n@SMS 'a-t
" _ m mo: mm mm
Cir: sri'v'rotrurs'i-t
ci' jn’.'o w EMS
R. u_—1
.- E ttl
_ QT VZT’IZ t
.8; Q v,
'1 r'.'?
idDDZl I
Fro j, m w,'
2 (~13 Cr- sh (m) l a
d fl f? E S p D l g :1
- to m f 0 oe,), e? (? I t,
131) N .5 I 'i' r
_ U' 4 i t--4
diDOL ~ Cf“: i re
2 ,erc',
F o 1 V' N
5E m I 5%; ''i:fro-(r??
N a "13 '
ic".-" 3%: m m
n: ui T'" gm Crt
l cvsu vEMs
> qveu ms N340 ”(g
m m: eveMs "d
95): N434? (E
cm) 21;) mm QEMS égb
£5001 I 4410 D m
USt ".f.P JOE
E iist Jsit o m
b J Cd) k:
cm: now {"51 %
s',ti- 133129 WMSo 2017}; , 3
T--? 1m Rt
8E0 292}: @1’HO 0 H73 'pix, it
Nd " - 13M -
U a, - azos kt
wen 33w - m N
t , XL 5 _----3iL------ "
u, tu-r ‘30 Mat ',2
',UscT, q
UI - m
para m v
List C
2% M 3
vt?u'ti5---!Ltrte; OOC)
F- .r.
t--el, irr'tro se
692%) 9k
T---'"."-", _ .9
(mo anzzoo o 973 9vMs v
in’zro Hum“ 917mg
UM't N350 C,'-,,'' :
s' W ?vas
581 ms ctw d N350 §ng
ris's "
.202 .8 x-st---,-)')), ' Q
3;! li, g G u ti, Ergo; d u W852 1
35’? p R c, g WT o "
UV WE ms: 9L5) (r9
- 1--A'
spot; iN'Lo 0
' ZEZSMS Trio
dnt u@:
--© c-ia/ss-tr-yi- 25)
L26 _ - int -fts"-,,-,i/, ga 'ti'
>55) v m
a OE 2
t-n F-CI w
2558 U t |__— - m ’3
(POE CD m 2
.n 55.
' MSD < it '--'li'r1-----y1?-rv-,,e;
m _ - m Lf 95MS , I' VT
H _ trsi d r M'st
qssu 1
tr. 3 Lir"
CD P958
TA‘I310AN497
TOSHIBA TA1310AN
:11) N
3 5 2 Cd C:-- ' m) g 9 tr. g
o E, 5 39m
dEBESVDJ. 2 m Tk m.”
o < E Ps LID ‘v
- N m m Q9 A e, ca re a 2 IN cs + -
DJ.) DN C o > It, "71
'- 3+ 'A. l - a a a u, 923 i',
4d000t H c, llo' 3 -(ias" u g < N w y——Q
m .- "
4 I N a > 2 i n 0 @
G S c, a' N F E 523
l E ir, 1li'E5-01; E TI a, C',?,')
N p. _ o > "fm an
S 3? 'r' i g _ ll 720 um
F - - F.
tk m “‘ u, 38] Ct n; 3
E M > o CD
Eva; VEMS >
i', WE! u" _ vi 3: E E E a
U EvEMS C m
:9. I C,
, 9m ir'?, g
nus) E'LE) mm BEMS $30 $0 5
- + x u
M001 grib0' Q - K102)
i Ci' ii'>d C-'?.,?. + *
t-i'NW-o ki - S int'd OZMS < MI!
334, g S "bh m . "fl "
E “M5 r-roi-r''"; '. “7;; m C, T" 0 sr/trrp-t UV Al‘s
< ass) éim a tT a _ -c-)e-t
m H A ED 0
suou = a [v')',',". or, 52 F_-----t r 3 30”
_ T, “0 grit V -cett-t
Gov) qova strtece 'Q a no mm a
- u) -
fn‘L tPT9 OVMSO cow 'i? bf K E C u-r-t n.
3 'ii,') EX Fl < : r 990 Mm 0 cm: 3 '
irit '0 vazm ' a t=, " Pogo (r'
350 93%“ (ii) _ o 3 ma il - 33 g; u, amo‘o sri - C7 -Mi'it,'
Nd mi Cr' 1mg; -lillr--p--,e Ce, > > g >on F- _
quu Izzy :3 x -u a - , g
m > c < 3 an; m -Era'
UO Luvs _ ' N l? ES CD O 'S foo E ,
n+1 ( m ( 1 _
['i'e?i; 2” Arm F, u J, C' ; _ u quzb Cl
Pl TD .1
985.! 53 - 8 s if i'ii' ru.
_ l P ._
USL < 0 E 000
Fig E _ 's t El}! TT" 20? 30214
A m '-------ifis',s o C" .- -u DlS
F- 5 = C? mm E tf
s1'id-'eos,ms 0013 E F _ "op qoe8
F- "r--" z x T .t-r"
ce),,-,? Jritty'0 EOE? 98 ,_ (Wt U015
t-yc"-T, b-- U E '- 2023
MN) ”2100 0 91m 9t'MS vi-fe''-' 2 a + -
- ' < sn‘om
. T mo:
and 0 L98 eva; sr- ok l,
---ettt--8 -, m; - a p
mu " ;Cmo si,',",'-",",',',')'':--?:,,, OLMS a.
Ex w I? cvaS , 's a K, m a 2' ig 3
F- pvsu U)!” tet9 on £20696“ x 2.: 3
w f P. " tsi, '', 32C , 9,z-?rC 5 >
Eu: ritlci,,s,:l,,"e-ii',i',5V),'i', '-3fv-d, WESE 8 oo in‘Lo@aMs s-l'-,'-, m a
cur - x 2 a c. m V' 051: , L325
cThit T? -
avgy "Stl f?, UO g o fi' w 't"s2 -),','faC-,,i-((i-rc('s,ko LMS
mz CHE - V Uh E
LS I e u) F a tTA
Ev“ Eq 3.5 l53® >5 p,=l'Y w
790 " N ranh m grfr0' 0 ’ 3 g
_ f 38} OEZSMS 253 > I SD
0 §:,? SWQDEE 'Cr,,,:,,,, tr? 3m in‘L’u@SMS B:-{
01 U 0 < m o m m Tk <
(l,'; {g} " $3 s-s'','"":-,,,')'?, ' Cm F 25 " v) o Tri
tr, _ r - - " . m " (pst “>151
'dl gr"- t, “10698 'ii rt: 0:; sn1'u@vms < J (J
g " 2 z s: o
' st .9 , ; m Ito-g-rc'.'-,
t, Q ; an: o @ EMS <
= x ad _
3 I ',' 'f; Sf: a
to' t-ir-- - M3dC) m u: E's
- - + m cm v
th Jt.'t 95w b'', 1: >0
_ _l i-.. 2
17', a
I- ': , m
D - 9, o
u g . m
UL > E
F- w m ID
TOSHIBA
TA1310AN
OUI Ob] (zNDZ
Vcc 0LT
(or VCO
TA1310AN
(5 V) 0U!
IK IN Centmmg FW/FR OUT
R C: B
V“ Vcc
(9v) mm mm FIL‘FR
V.NF8 V AGC
I3 OUI
Vs w’N ABL IN 0U” R OUV Cy OU'
GND‘ R IN
223 mm
11/7 01.
Made 'ii,' . -iiirs
on (w s
cs ac vszu
LRCY 1m g
A rs - -
N grit
923 ',',
, F.---,,
I mu 0 @
"r,?,h, F!
d: “V” pro (m
QOZ) a
2 CD * - ons a
m grr't't <
1: an mza 5on 's
s I-- - - W d
Z Jrittro t C Al‘s
2 Hoo &
_ qozu A
- mm Wus R
rt 201)
- , - - it
i?, I'?,', tg
( QT: c: c n: o
dr7t' o CE) tith!; 'l-':---, PN v
" ir,,,,,-,,,,,---:-,
tl jnl'0@8MS <
35411106911“; 'C-t
'trc-ip-rift/su-ri':'
C' amo®ws <
sTi1'ori-s"ss'C-t
:5; ® <
'-'tirv1ertir"'-C--t
m inru®zM§ < i
I u, Cl
I g C',
2313 JN '
e t (2 T - T 2 (e) l g g
y d g 8 E S , D l 2
_- 6 a " m (e) Ts cc 'rszrt,i,
v, DN 'r)
on I,,,-: o
IU' C-Il t-(r-,' 5
Mom Cl '/cP,zei Cl
- o q H. rs
EC JT s),-",' "i,"-., 'tv-lr? I
N C,' m C',
U 4 w .1
F- _ E S m a
CC UT _ 'tjtiF---(2 >
vau :sts
> _ twin 15 made st g t
m (m arms "d
qssaSEMS 9558 m a o
Q ma 006E 2 I
'i'Fe--r-'"-'ltwt, Nid g
m: etFO mm BEMS :6” Jt
re-aol grrt0 o 9 tt
33w :0 ©
_'. s"" a 'IP Kg 2
Aids ®wru 1gb:
96:3 Ma'
snot? :
QDVH f, N'yz z
stil- mm mumsg go” 's2'i-'
$_ng 55M uo
see van @“W 0 H724 'ii _:
lsd m: SE U09E nos g3: fr'.
(mu lggu 5: " 3 ',cs)i:'
u" JP” 5 N J
51:; Eva s-,to'r 1
w '" '-tsr
PBEH Cl m: g m g a
USL , T -
= M '------C,') g
ihr----1'as.rus 00:) m E
t-S" i" LO'O Q C 5
3 ---t u
q”: ar/zzoo o 9” "MS 3 RT l
WZZ'D "PP" POMS K F
(H51 - I gc" m
" "ll Pvas p F
sr, dk w
Ex PPS)! 015'; égt’, a:
uv m T:
S) L". "‘ ': m ‘l "y:
35; ct I ii c" a'
V’ '" 1 f? v o it
o WI U
quu N798 1:
me U’IE U
ms: 2:53 @ .v
TR EVSH - + '
t N Mom m ““10
"o-, b'" $8} 3915M: ls: N F
3 b--- Ml 0 @ 'ii m
v Cr ct a: u m m
_ ",, EB} S?ESMS F50 m _
ei, m t--s-/,T-l m“:
11p -",
t m 3_4 ML
D 2 E552;
E m cpe
< n: u t
q9a 298
Fld um um
TA131OAN499
2000-04-10 99/104
TOSHIBA
Color difference stage
TEST CIRCUIT
TA1310AN
5 k9. 7,5 id!
- Q4 M e, e a, S:
Di) DN x
r-- ER: '---e
#10001 G U: S
'" O V v: N
U m u 4 m es
EEN N g G iiiito-(e??,
N Ts' C) Td
g - p .- m
n: wi K m 'ijii--4?y"
vau "AIS
EVE}! U15 V340 73’
UM " MS _
Luz) us: mm QEMS ,
rFudr 1 JrrA)
assu pf“
$--kVs"'-o at
3 ust _ 3823 ,
= /BEMS ®jril'o :2 _
ESE) RK
cot new
L100 qovu fri f i? x
9 0'Msse ED” Ct g
'ie _ v
“0 'T." mi n -
Er (y: SIX} LF,098 1205 e
wear: 9888 , 29)
(VII? l ml;
ti,G,zc,k
Mlo‘o se
3 @9917: '
nzzon o +
law: d 9” 9vMs "
an‘zro LVHU‘OE 9”,“; rs
----6NV---E,
mm Made 2 Cs)
§g w 8 PBVMS
_ PVSH l st‘;
USL ”l D a x
P.) 'u" F 9 ~ " m E, a I Ji',; n ','l
1',ie,t v3: 1 Bomns was: _
u+ ',2 g P, U g w C) .n 058
o U815 c: o un
E 3 (l
r415) Elsa H '
s-Iii,-] ' s-,-;,-),:,"-?)' : M"
N Mom Gl 5”
3% 492:5Ms 253 es
_ t---eroti:Tl N m
m i” ',1,s,ifffiri,-T."is',)",',
',i?sir----s-Hrr,,sss
grit" 3
0.2 <,
Curr B',,
'ee- mo
u I' a 61) (w odo
Fa F- _- . J _
J?" m5 F, intro ‘AlS
CL n: _ _
a GE” 8413 ,'i:ce, I 30214
> r-s's'-- :I'7l00
- x T, _
E ='iC-''7-t F---, a
< z 2913 amoo ass) (?
Jo v" a 100 Mom '
:3 sir,,-.', --4 -
y ,< - Sth' m -Wrb'
ttt 5 8 't2 E F
dvo m m (50m r- qoro
_ T" _
l m 'c, ma V g ta'
‘3 <1 r n _
no '" o T" cu K -
< o 5 0001 k
Ak 9020 Jul!
E _ _ as
a 8 C E "s2-Ttth-t
5 ac 2 mm F-
" Ne por8 Lmzu
: - qt
§§ 58 '" Um Hors
2 , nun
Y J V'__£ - -
< k' ' M001
Fr-, a; >
28 0; m
, > c) d
r?, _cc'_a,,'1'i-sii,',')i,-isi,r'i; lil :2 g
eo oa, d"l0@5M§ n AT
E RET,,' i >
"x oo dn'L 000@8MS 'l-rt u 0
£5 f?,'-';
0° Crrcc L0 w LMS
£3 Ci" cd' m
Ya E ,-'itoa-)scssi-: < mu
ta- m int SMS t
993 q98 193
ta Fr 4 moz um um
=- ' s-)2rtr,-cs;c:--t
2 E m ED m
F “ "d wro®s~xs 'x-t
:3“ ii
at' $0 i
TA131DAN—1UU
100/104
TOSHIBA
TA1310AN
cuo JN
' F s (2 5 fc Cs G) E
F d 8 8 E S tr D l 't
a q M) e) h cor G6
131: N .." DN 8
'd+ 1 $----(i,-,'
adooot A. Lf'e
_ 0 , w CN
u m b " ME CN
EEN ' 'E T, cu ‘G
N w m ‘vl
U x u x
g P L T, m m
w -" EH
1 ma viMs
mm: U15 Nado E
um EVEMS g2
qssu SEMS Essa m
(', 'Cl
" ic, ems WW
qzs: us: In
",i3di.-, Hrj ':
grim)", in lo a rec,
a9Etl 2,r'ii,C,'
USU v 3893
try /8€MS @M: o m
< 96E) T Re
cot quJ S‘.
w, - gl
QOVH Arfrt '
fr.u- eon 15x29 owvxsE go” 3 8
3:0 9894 'e-rr-v)
= ms T,
new NEH fe
UH? 011‘s
'YS----.'.))?-' 0013 m
Woo sl;
@951” _
'--"C-1O, T u;
q”, inZZUO 0 9w 9PMS u, w
ir/ZZ‘O 1730105 91pm; rs
mu Nado 'i? v
v "A '
v $73 PEDMS
:13 mm: mm mac 1%:@
USL 6PD btrY m
'--iii,i',-d v
gl A. w i U wes‘s
yilttc, F,
U; .- K
U '-ee
.,~ 1'
:3 ti?,
'ct'd E
:2 ““5
1c wc'
q;.‘< D
31:30 O
u '- m
8-2r- o
: F- 's
mo cry
rart'G 93
“0 On:
B: 9,Ec:
U0 Orr:
'ds tas
uh ?i's
ob'! >0
TEST CIRCUIT
Y stage
\r --t
.3 ,—$ E Dom
.- a_o grirtro -..YY.t-t
t: £le E
aguinwo L191) g
-tiLi-
grll m -Wi-
5 tga- F-
',2 13001 _ qozo -"
, ‘U 4
v M l ['2' ~
.- 5 U00t - -
x 2023
Erll m egtty
C" E 0015
m U00t -
com com
mu ums _
E 902)
Hr_-R t -
u’n jnom
> -. P.
"‘ a Ca'?,', :1
oir-dis-i'j n: on: o
jnl 0 (F) EMS 'r:-, N "
't yil 0 3@ EMS 't:-t Cl D
ML 0 w LMS "_ t
dy J, a
r \u E
m ro m Fr, u
m wyo®sms "a-t _
Tk em! 298
q Gl moz 15m U’ISl
s'rtt'0 tr/Wi
3;; " (E) 'ii-t
3M J_IJL‘O@EM§ 'z-t
C5) 0 m .-
2000-04-10 101/104
VOL/ZOL OL'VO'OOOZ
20 L —NVO L£LV.L
llnDUD .1531.
l CIN‘)
)DV l8
ZLnOdJ.
@ngng :G
@o m E n W H
3‘15kSl 15km 201:le Pio—Hcd 3 (5'3 5w53iao— 4%
R6: RBb R63 3%
SW; 0. m; o 'IuF
3—H ® C:T; C 5 :3 -®I o—M
(52 SW52:
3621s uogpauoa uogneuap pue 3621s uogpaueq
m2 054
R54a )4
3—1;: 5w7 @ 0 1aF x
2 A —~w——s
5wa®01.uF::.z: x “§ 353“” 12 F u. iv:
3‘—°\°——':3 6f 3 w ' "H J G '5‘ E?
‘ x49 “9 7557
3 —q sws ® 0.1uF 3:
5 75m R54d .
3' 3&5” a m N
< swaaa
sww “$5,:
050 “A HA
(3)102
(5’! av
75’! 0E
“01» fl
(mu SW45cu E ——”—
mo NI‘Iav MM
5 51m") 1.2m
RZDb R20a
510$1J< A
R20: 0703
“H 0N9 ?WO‘N) NV
g 10 _M_ F
A? 503k — ' E
— 36082
" n R41 1
mo E UIO D U10 )1
NVOLELVL
qs Ldl tWM; Qild-
SW38 3,
a 7531 Q
Raae E
Hlflli 8311M 8311H
U’I L5
IS)! IS
15" 05 m L s
lOOOpF
(a (m) » 9 ~ (a
5.1m Q7 3 E TC45388F‘
R28c E _9 _ E 3‘ Sq
51km 4 ( J u: 1
3—w‘——o 5W28 NC cTcs
RZSb x H
° IZOOpF
3—w— _ ,
rum: 3—!!—
mkil C23
®o.47uF m“.
{CINE}
CIND CI
GWVHA 39VA FHNA U10 /\ m0 Bi‘Mi 6““5wa) N! W
/\ 1H1
9318 y
NVOLELVi VHIHSOJ.
TOSHIBA
‘ Be sun In design the power supply so that when the power is ON, DEF V(c IS
below 1 9 V
(Note I)
APPLICATI ON CIRCUIT
o---,,,,);,-,:
9 UN); rm
te:V----lrii,
ocrid-----(rrC'c)
E tJ80t JdODOL
_ V-UT-e- t'i','t
3 mm I
oCl-'Ne-- m
u/r- x
ap t-R
5.0 > (por
Jrr00t drir0'0
i', i3.
drrt 0 " tat
drrUd 1'f a
ritiro ' _ - UK
> am tprs ' o
m ' - V
(5062 x
3 ----llll 5
054205 N
'o----
y ih'LZOO
x_m Hv
a ml idODUI ' m
- F--- q
U iGOOZE
'----a "
- ' "U)IEE a 0
MIN) "
FL-, ' n
EEEP' st
E HWSVSGZS E {501 w, m
Mom drrr0'0 F
' _ t 3 ' Q
vf,0--- T,
iNL'D 3t
ttSSCs-----'--' 'iS-o;
i’lL'O it
'ts-SCs---- C:
Jrit' fl
l 0 _ r9
- - Pig
FEP VD HD 6ND H 5
OUT OUT
SYNC H OUT
V(( (9 v) our
N SIIH AFCI VSep SVNC DEF
Corr VCQ \N
C IN GNDIII
nv vcc cw X'lal RY ax APE
(5V) OUT OU' our
BLACK Y \N
TA1310AN
R G B V
IK IN Cunlermg EW,’FR Olll
FIUER FILTER F‘LTER
050 OS!) VK
Vs IN ABL IN OUT
m vm 050
V NFB V AGC V RAMP
G CUT 8 OH"
TA1310AN
0m Gum
TP1 D—O
‘t ' -
" drrr
“31'! Jn'lp'u
Crsy-l-":,Tr-''-t
x g l"
a ' - ,
v --tt ¢_._m_€
Ce)------
D grtrr
r59-t- - t
tret-' o
adootz
1n Ar n -"--t
Cr? l T 75m
17710 D LP. t
Ci' Mom t" 4" co 0 Il ummm
' _ F-t mm "
:0 d : U’IZ'I R
b" H V F-HF-t
ma? mm 's, >
F v 1sz m rs
' 15001 E;
, idLZ : "'c' t)uuoolp'G "
_ mm H u -tr-t
',2 _ -r------"-
c'T - M's'u I'
'- -u t £21551
o me < 1; [iarwinrar]
rss' a E
’ ml co ;
21:10 #0va c2
li) Fe V, -
"rtii'Cf 0 m
siit l: yum (m 93
1st O a
:w ME 131” 9 g
ms'a cr 'r
ms; > g
: :5? am 0 u" E
LHirr > m
_iiiii"rr:,i'i't
: 3‘? IO-" 0 2
min > U
_ 3;? AM o m z
TA131DAN—103
2000-04-10 103/104
TOSHIBA TA1310AN
PACKAGE DIMENSIONS
SDlP56-P-600-1.78 Unit : mm
mm 29 "r
I-lf-lr-lr-lf-''")}-])-'].-]?-)!-].}-}-))-)}-).-))-).)}-.,-),-!}-)..-?.-, N| C9
u w cu
rs/Y c? 5
LLU.dcdclL-clL..lclc.lclclclulclcJcjclcl.-lclLlclcJulcJunuul
50.9MAX
50.4f.O.2
4.2iQ.3
IA 97TYP
ll "ll" 0.18
Weight : mama (Typ.)
2000-04-10 104/104

www.ic-phoenix.com
.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED