STTH30L06CW ,TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIERapplications, as2D PAKrectification and discontinuous mode PFC boostSTTH30L06CGdiode.Table 2: Order ..
STTH30L06D ,TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIERapplications, asrectification and discontinuous mode PFC boostdiode.AKDOP3ISTTH30L06PITable 2: Orde ..
STTH30L06D ,TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIERSTTH30L06®TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIERTable 1: Main Product CharacteristicsI30 AF(AV)V6 ..
STTH30L06G ,TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIERFEATURES AND BENEFITS■ Ultrafast switchingK■ Low reverse current■ Low thermal resistanceA■ Reduces ..
STTH30R03CG-TR ,HIGH FREQUENCY SECONDARY RECTIFIERapplications.Kn Hyperfast recovery competes with GaAs devices.n Allows size decrease of snubbers an ..
STTH30R03CW ,HIGH FREQUENCY SECONDARY RECTIFIERapplications.Kn Hyperfast recovery competes with GaAs devices.n Allows size decrease of snubbers an ..
T620600W ,SNUBBERLESS TRIACFEATURESA An I =6A 2 1TRMSn V =V = 600VDRM RRMGn EXCELLENT SWITCHING PERFORMANCESn INSULATING VOLTA ..
T62M0002A , Digital Sound Processor Embedded SRAM
T62M0002A , Digital Sound Processor Embedded SRAM
T62M0002A-K , Digital Sound Processor Embedded SRAM
T62M99A , Digital Sound Processor Embedded 48K Bits SRAM
T6668 ,-0.3 to +6.0V; V(in/out): -0.3 to +0.3V; CMOS LSI for voice recording and reproducing using the ADM systemELIE D " '3tP17iiYH1 DDELI‘ILIE Ell: .TOSB T6668_1||
TOSHIBA (UC/UP)
1. GENERAL
The T6668 is ..
STTH30L06CW
TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER
1/8
Table 1: Main Product Characteristics
STTH30L06CTURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER
Table 3: Absolute Ratings (limiting values, per diode)September 2004 REV. 1
FEATURES AND BENEFITS Ultrafast switching Low reverse current Low thermal resistance Reduces switching & conduction losses
DESCRIPTIONThe STTH30L06, which is using ST Turbo 2 600V
technology, is specially suited for use in switching
power supplies, and industrial applications, as
rectification and discontinuous mode PFC boost
diode.
Table 2: Order Codes
STTH30L06C
Table 4: Thermal Resistance
Table 5: Static Electrical Characteristics (per diode)Pulse test: * tp = 5 ms, δ < 2%
** tp = 380 µs, δ < 2%
To evaluate the conduction losses use the following equation: P = 0.94 x I F(AV) + 0.017 IF2 (RMS)
Table 6: Dynamic Characteristics (per diode)When the diodes 1 and 2 are used simultaneously:∆ Tj(diode 1) = P(diode 1) x R th(j-c) (Per diode) + P(diode 2) x R th(c)
STTH30L06C3/8
Figure 1: Conduction losses versus average
forward current (per diode)
Figure 2: Forward voltage drop versus forward
current (per diode)
Figure 3: Relative variation of thermal
impedance junction to case versus pulse
duration
Figure 4: Peak reverse recovery current versusF /dt (typical values, per diode)
Figure 5: Reverse recovery time versus dIF/dt
(typical values, per diode)
Figure 6: Reverse recovery charges versusF /dt (typical values, per diode)
STTH30L06C
Figure 7: Reverse recovery softness factor
versus dIF/dt (typical values, per diode)
Figure 8: Relative variations of dynamic
parameters versus junction temperature
Figure 9: Transient peak forward voltage
versus dIF /dt (typical values, per diode)
Figure 10: Forward recovery time versus dIF/dt
(typical values, per diode)
Figure 11: Junction capacitance versus
reverse voltage applied (typical values, per
diode)
Figure 12: Thermal resistance junction to
ambient versus copper surface under tab
(epoxy FR4, eCU =35µm) (D2 PAK)
STTH30L06C5/8
Figure 13: TO-247 Package Mechanical Data
STTH30L06C
Figure 14: D2 PAK Package Mechanical Data
Figure 15: D2 PAK Foot Print Dimensions(in millimeters)