STPS60L45CW ,LOW DROP POWER SCHOTTKY RECTIFIERapplications.ABSOLUTE RATINGS (limiting values, per diode)Symbol Parameter Value UnitV 45 VRRMRepet ..
STPS61150CW ,HIGH VOLTAGE POWER SCHOTTKY RECTIFIERFEATURES AND BENEFITSA2n HIGH JUNCTION TEMPERATURE CAPABILITYKA1n LOW LEAKAGE CURRENTTO-247n GOOD T ..
STPS61170CW ,High Voltage Power Schottky RectifierFeaturesA1■ High junction temperature capabilityKA2■ Low leakage current■ Good trade off between le ..
STPS61H100CW ,HIGH VOLTAGE POWER SCHOTTKY RECTIFIERFEATURES AND BENEFITSA2■ HIGH JUNCTION TEMPERATURE CAPABILITYKA1■ LOW LEAKAGE CURRENTTO-247■ GOOD T ..
STPS61L45CT ,Power Schottky RectifierFeaturesA1K■ High current capabilityA2■ Avalanche ratedK■ Low forward voltage drop current■ High fr ..
STPS61L45CW ,Power Schottky RectifierSTPS61L45CPower Schottky rectifier
T1308 , TELECOMMUNICATIONS PRODUCTS
T1337 , TELECOMMUNICATIONS PRODUCTS
T1343 , TELECOMMUNICATIONS PRODUCTS
T14L1024N , 128K X 8 HIGH SPEED CMOS STATIC RAM
T14L1024N , 128K X 8 HIGH SPEED CMOS STATIC RAM
T14M256A , 32K X 8 HIGH SPEED CMOS STATIC RAM
STPS60L45CW
LOW DROP POWER SCHOTTKY RECTIFIER
STPS60L45CWJanuary 2002- Ed:2C
LOW DROP POWER SCHOTTKY RECTIFIER
Dual center tap schottky barrier rectifier suitedfor outputinoff line AC/DC power supplies.
Packagedin TO-247, this deviceis intended for
usein low voltage, high frequency converters, free
wheeling and polarity protection applications.
DESCRIPTION VERY SMALL CONDUCTION LOSSES NEGLIGIBLE SWITCHING LOSSES EXTREMELY FAST SWITCHING LOW FORWARD VOLTAGE DROP LOW THERMAL RESISTANCE
FEATURES AND BENEFITS
ABSOLUTE RATINGS (limiting values, per diode)
MAJOR PRODUCTS CHARACTERISTICS dPtot
dTj Rthj a< − thermal runaway conditionfora diodeonits own heatsink
STPS60L45CW
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Pulse test:*tp= 380 μs,δ <2% evaluate the conduction losses use the following equation:
P=0.28xIF(AV)+ 0.0073IF2 (RMS) 5 10 15 20 25 30 35 400
PF(av)(W)
Fig. 1: Average forward power dissipation
versus average forward current (per diode). 25 50 75 100 125 1500
IF(av)(A)
Fig. 2: Average current versus ambient
temperature (δ=0.5, per diode).
THERMAL RESISTANCESWhen the diodes1 and2 are used simultaneously: Tj(diode1)= P(diode1)x Rth(j-c)(Per diode)+ P(diode2)x Rth(c)
:
www.ic-phoenix.com
.