STPS41H100C ,LOW DROP POWER SCHOTTKY RECTIFIERFEATURES AND BENEFITSA2A2n NEGLIGIBLE SWITCHING LOSSESKKA1n LOW LEAKAGE CURRENT A1n GOOD TRADE OFF ..
STPS41H100CG ,LOW DROP POWER SCHOTTKY RECTIFIERFEATURES AND BENEFITSA2A2KKn Negligible switching lossesA1A1n Low leakage current2TO-220ABI PAKn Go ..
STPS41H100CG-TR ,LOW DROP POWER SCHOTTKY RECTIFIER®STPS41H100CG/CT/CRLOW DROP POWER SCHOTTKY RECTIFIERMAIN PRODUCTS CHARACTERISTICSA1I 2x20AF(AV) KV ..
STPS41H100CR ,LOW DROP POWER SCHOTTKY RECTIFIERFEATURES AND BENEFITSA2A2KKn Negligible switching lossesA1A1n Low leakage current2TO-220ABI PAKn Go ..
STPS41H100CT ,LOW DROP POWER SCHOTTKY RECTIFIERFEATURES AND BENEFITSA2A2KKn Negligible switching lossesA1A1n Low leakage current2TO-220ABI PAKn Go ..
STPS41L30CG ,LOW DROP POWER SCHOTTKY RECTIFIERapplications.ABSOLUTE RATINGS (limiting values, per diode)Symbol Parameter Value UnitV 30 VRRMRepet ..
T12A6CI , BI-DIRECTIONAL TRIODE THYRISTOR 10A MOLD TRIAC (AC POWER CONTROL)
T1308 , TELECOMMUNICATIONS PRODUCTS
T1337 , TELECOMMUNICATIONS PRODUCTS
T1343 , TELECOMMUNICATIONS PRODUCTS
T14L1024N , 128K X 8 HIGH SPEED CMOS STATIC RAM
T14L1024N , 128K X 8 HIGH SPEED CMOS STATIC RAM
STPS41H100C
LOW DROP POWER SCHOTTKY RECTIFIER
STPS41H100CG/CT/CRJuly 2003-Ed:3A
LOW DROP POWER SCHOTTKY RECTIFIER
Dual center tab Schottky rectifier suitedfor Switch
Mode Power Supply and high frequency DCto DC
converters.
PackagedinD2 PAK,I2 PAK and TO-220AB, this
deviceis intended for usein high frequency
inverters.
DESCRIPTION NEGLIGIBLE SWITCHING LOSSES LOW LEAKAGE CURRENT GOOD TRADE OFF BETWEEN LEAKAGE
CURRENT AND FORWARD VOLTAGE DROP LOW THERMAL RESISTANCE AVALANCHE CAPABILITY SPECIFIED
FEATURES AND BENEFITS
ABSOLUTE RATINGS (limiting values, per diode)
MAIN PRODUCTS CHARACTERISTICS dPtot
dTj Rthj a< − thermal runaway conditionfora diodeonits own heatsink
STPS41H100CG/CT/CRPulse test:*tp= 380μs,δ <2% evaluate the conduction losses use the following equation:
P=0.58xIF(AV)+ 0.0045IF2 (RMS)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
When the diodes1 and2 are used simultaneously: Tj(diode1)= P(diode1)x Rth(j-c)(Per diode)+ P(diode2)x Rth(c)
THERMAL RESISTANCES 5 10 15 20 25
PF(av)(W)
Fig.1: Conduction losses versusaverage current.
25 50 75 100 125 150 175
IF(av)(A)
Fig.2: Average forward current versus ambient
temperature(δ= 0.5).
STPS41H100CG/CT/CR
1.E-03 1.E-02 1.E-01 1.E+00
IM(A)
Fig.5: Non repetitive surge peak forward current
versus overload duration (maximum values).
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02 10 2030 405060 7080 90 100
IR(mA)
Fig.7: Reverse leakage current versus reverse
voltage applied (typical values).
1.E-03 1.E-02 1.E-01 1.E+00
Zth(j-c)/Rth(j-c)
Fig.6: Relative variationof thermal impedance
junctionto case versus pulse duration.
10.0 10 100
C(nF)
Fig.8: Junction capacitance versus reverse voltage
applied (typical values).
1.2 25 50 75 100 125 150
P(t) (25°C)
ARMp
ARM
Fig.4: Normalized avalanche power derating
versus junction temperature.
0.10.01 1
0.1 100 1000
P(t) (1μs)
ARMp
ARM
Fig. 3: Normalized avalanche power derating
versus pulse duration.
STPS41H100CG/CT/CR
PACKAGE MECHANICAL DATA2 PAK
0.0 0.2 0.4 0.6 0.8 1.0 1.2
IFM(A)
Fig.9: Forwardvoltage dropversusforwardcurrent.
5 10 15 20 25 30 35 40
Rth(j-a)(°C/W)
Fig. 10: Thermal resistance junctionto ambient ver-
sus copper surface under tab (epoxy printed board
FR4, Cu= 35μm).(STPS41H100CG only)
STPS41H100CG/CT/CR
PACKAGE MECHANICAL DATA2 PAK
FOOTPRINT (dimensionsin mm)