STGW30NC120HD ,1200V, 30AElectrical characteristics(T =25°C unless otherwise specified)CASETable 4. StaticSymbol Parameter T ..
STGW30NC60VD ,40 A, 600 V, very fast IGBT with Ultrafast diodeElectrical characteristicsT = 25 °C unless otherwise specified.J Table 4. StaticSymbol Parameter Te ..
STGW30NC60W ,30 AAbsolute maximum ratingsSymbol Parameter Value UnitV Collector-emitter voltage (V = 0)600 VCES GE(1 ..
STGW35NB60SD ,Low Drop "S" seriesElectrical characteristics STGW35NB60SDTable 5. Switching on/off (inductive load) Symbol Parameter ..
STGW35NC120HD ,35 AAbsolute maximum ratingsSymbol Parameter Value UnitV Collector-emitter voltage (V = 0) 1200 VCES GE ..
STGW38IH130D ,33 AElectrical characteristicsT = 25 °C unless otherwise specified.JTable 4. StaticSymbol Parameter Tes ..
SUT460M , Epitaxial planar NPN silicon transistor
SUT480H , Epitaxial planar type NPN Silicon Transistor
SUT483J , NPN/PNP Epitaxial Planar Silicon Transistor
SUT488J , Epitaxial Planar Type PNP Silicon Transistor
SUT497H , NPN/PNP Epitaxial Planar Silicon Transistor
SUT509EF , NPN/PNP Epitaxial Planar Silicon Transistor
STGW30NC120HD
1200V, 30A
October 2007 Rev 9 1/13
STGW30NC120HDN-channel 1200V - 30A - TO-247
very fast PowerMESH™ IGBT
Features Low on-losses Low on-voltage drop (Vcesat) High current capability High input impedance (voltage driven) Low gate charge Ideal for soft switching application
Application Induction heating
DescriptionUsing the latest high voltage technology based on
its patented strip layout, STMicroelectronics has
designed an advanced family of IGBTs, with
outstanding performances. The suffix “H”
identifies a family optimized for high frequency
application in order to achieve very high switching
performances (reduced tfall) maintaining a low
voltage drop.
Figure 1. Internal schematic diagram
Table 1. Device summary
Contents STGW30NC120HD 2/13
Contents Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1 Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
STGW30NC120HD Electrical ratings
3/13
1 Electrical ratings
Table 2. Absolute maximum ratings Calculated according to the iterative formula: Vclamp=80% of BVces, Tj=150°C, RG=10Ω, VGE=15V
Table 3. Thermal resistanceCTC() JMAXTC–THJC– V CESAT MAX()TCIC,()× ------------------------------------------------------------------------------------------------------=
Electrical characteristics STGW30NC120HD
4/13
2 Electrical characteristics
(TCASE=25°C unless otherwise specified)
Table 4. Static
Table 5. Dynamic
STGW30NC120HD Electrical characteristics
5/13
Table 6. Switching on/off (inductive load)
Table 7. Switching energy (inductive load) Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in
a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs & Diode are at the
same temperature (25°C and 125°C) Turn-off losses include also the tail of the collector current
Table 8. Collector-emitter diode
Electrical characteristics STGW30NC120HD
6/13
2.1 Electrical characteristics (curves)
Figure 2. Output characteristics Figure 3. Transfer characteristics
Figure 4. Transconductance Figure 5. Collector-emitter on voltage
vs. temperature
Figure 6. Gate charge vs. gate-source
voltage
Figure 7. Capacitance variations
STGW30NC120HD Electrical characteristics
7/13
Figure 8. Normalized gate threshold
voltage vs. temperature
Figure 9. Collector-emitter on voltage
vs. collector current
Figure 10. Normalized breakdown
voltage vs. temperature
Figure 11. Switching losses vs.
temperature
Figure 12. Switching losses vs. gate
resistance
Figure 13. Switching losses vs. collector
current