SSM2211CPZ-REEL ,Low Distortion, 1.5 Watt Audio Power AmplifierApplications.. 18 Thermal Performance—LFCSP... 13 Driving Two Speakers Single Endedly. 18 Typical A ..
SSM2211CPZ-REEL7 ,Low Distortion, 1.5 Watt Audio Power AmplifierFEATURES FUNCTIONAL BLOCK DIAGRAM 11.5 W output2Differential (BTL ) output IN–Single-supply operati ..
SSM2211S ,Low Distortion 1.5 Watt Audio Power AmplifierApplications include personal portable computers, hands-freegives lower chip temperature, which ens ..
SSM2211S-REEL ,Low Distortion 1.5 Watt Audio Power AmplifierSpecifications subject to change without notic–2– REV. 0SSM22111,2ABSOLUTE MAXIMUM RATINGS ORDERING ..
SSM2211S-REEL7 ,Low Distortion 1.5 Watt Audio Power AmplifierCHARACTERISTICSDifferential Output Offset Voltage V A = 2 5 50 mVOOS VDOutput Impedence Z 0.1 ΩOUTS ..
SSM2211S-REEL7 ,Low Distortion 1.5 Watt Audio Power AmplifierCHARACTERISTICSDifferential Output Offset Voltage V A = 2 4 50 mVOOS VDOutput Impedence Z 0.1 ΩOUTS ..
START405TR ,NPN SILICON RF TRANSISTORSTART405NPN Silicon RF Transistor• LOW NOISE FIGURE: NFmin = 1.1dB @ 1.8GHz, 2mA, 2V• COMPRESSION ..
START499ETR ,NPN Silicon RF TransistorAbsolute maximum ratings (T = +25°C) CSymbol Parameter Value UnitV Collector emitter voltage 4.5 V ..
STB0899 ,STB0899 databriefSTB0899Multistandard advance demodulator STB0899Digital TV satellite set-top boxesDATA BRIEFDESCRIP ..
STB0899 ,STB0899 databriefSTB0899Multistandard advance demodulator STB0899Digital TV satellite set-top boxesDATA BRIEFDESCRIP ..
STB0899/ ,STB0899 databriefSTB0899Multistandard advance demodulator STB0899Digital TV satellite set-top boxesDATA BRIEFDESCRIP ..
STB100NF03L-03 ,N-CHANNEL 30VELECTRICAL CHARACTERISTICS (T = 25 °C unless otherwise specified)caseOFFSymbol Parameter Test Condi ..
SSM2211CPZ-R2-SSM2211CPZ-REEL-SSM2211CPZ-REEL7-SSM2211SZ-SSM2211SZ-REEL-SSM2211SZ-REEL7
Low Distortion, 1.5 Watt Audio Power Amplifier
Low Distortion 1.5 Watt
Audio Power Amplifier
Rev. C
FEATURES
1.5 W output1
Differential (BTL2) output
Single-supply operation: 2.7 V to 5.5 V
Functions down to 1.75 V
Wide bandwidth: 4 MHz
Highly stable, phase margin: >80 degrees
Low distortion: 0.2% THD @ 1 W output
Excellent power-supply rejection
APPLICATIONS
Portable computers
Personal wireless communicators
Hands-free telephones
Speaker phones
Intercoms
Musical toys and talking games
GENERAL DESCRIPTION The SSM22113 is a high performance audio amplifier that
delivers 1 W rms of low distortion audio power into a bridge-
connected 8 Ω speaker load (or 1.5 W rms into 4 Ω load). It
operates over a wide temperature range and is specified for
single-supply voltages between 2.7 V and 5.5 V. When oper-
ating from batteries, it continues to operate down to 1.75 V.
This makes the SSM2211 the best choice for unregulated
applications, such as toys and games. Featuring a 4 MHz
bandwidth and distortion below 0.2% THD @ 1 W, superior
performance is delivered at higher power or lower speaker
load impedance than competitive units.
The low differential dc output voltage results in negligible
losses in the speaker winding, and makes high value dc
blocking capacitors unnecessary. Battery life is extended by
using shutdown mode, which typically reduces quiescent
current drain to 100 nA.
FUNCTIONAL BLOCK DIAGRAM
IN–
IN+
SHUTDOWN
BYPASS
V– (GND)Figure 1.
The SSM2211 is designed to operate over the −20°C to +85°C
temperature range. The SSM2211 is available in SOIC-8 and
LFCSP (lead frame chip scale) surface mount packages. The
advanced mechanical packaging of the SSM2211CP ensures
lower chip temperature and enhanced performance relative to
standard packaging options.
Applications include personal portable computers, hands-free
telephones and transceivers, talking toys, intercom systems, and
other low voltage audio systems requiring 1 W output power.
1 1.5 W @ 4 Ω 25°C ambient, < 1% THD, 5 V supply, 4-layer PCB. Bridge-tied load.
3 . Patent No. 5,519,576.
TABLE OF CONTENTS Electrical Characteristics.................................................................3
Absolute Maximum Ratings............................................................4
Pin Configurations...........................................................................5
Typical Performance Characteristics.............................................6
Product Overview...........................................................................13
Thermal Performance—LFCSP................................................13
Typical Application.........................................................................14
Bridged Output vs. Single-Ended Output Configurations...14
Speaker Efficiency and Loudness.............................................14
Power Dissipation.......................................................................15
Output Voltage Headroom........................................................16
Automatic Shutdown-Sensing Circuit.....................................16
Shutdown-Circuit Design Example.........................................17
Start-Up Popping Noise.............................................................17
SSM2211 Amplifier Design Example..................................17
Single-Ended Applications........................................................18
Driving Two Speakers Single Endedly.....................................18
Evaluation Board........................................................................19
LFCSP Printed Circuit Board Layout Considerations..........19
Outline Dimensions.......................................................................20
Ordering Guide..........................................................................20
REVISION HISTORY
10/04—Data Sheet Changed from Rev. B to Rev. C Updated Format..................................................................Universal
Changes to General Description....................................................1
Changes to Table 5............................................................................4
Deleted Thermal Performance—SOIC Section ...........................8
Changes to Figure 31......................................................................10
Changes to Figure 40......................................................................12
Changes to Thermal Performance—LFCSP Section.................13
Deleted Figure 52, Renumbered Successive Figures..................14
Deleted Printed Circuit Board Layout —SOIC Section............14
Changes to Output Voltage Headroom Section.........................16
Changes to Start-Up Popping Noise Section..............................17
Changes to Ordering Guide..........................................................20
10/02–Data Sheet Changed from Rev. A to Rev. B Deleted 8-Lead PDIP.........................................................Universal
Updated OUTLINE DIMENSIONS............................................15
5/02–Data Sheet Changed from Rev. 0 to Rev. A Edits to GENERAL DESCRIPTION...............................................1
Edits to PACKAGE TYPE................................................................3
Edits to ORDERING GUIDE..........................................................3
Edits to PRODUCT OVERVIEW...................................................8
Edits to PRINTED CIRCUIT BOARD LAYOUT
CONSIDERATION........................................................................13
Added section PRINTED CIRCUIT BOARD LAYOUT
CONSIDERATION—LFCSP........................................................14
ELECTRICAL CHARACTERISTICS
Table 1. VS = 5.0 V, TA = 25°C, RL = 8 Ω, CB = 0.1 µF, VCM = VD/2, unless otherwise noted.
Table 2. VS = 3.3 V, TA = 25°C, RL = 8 Ω, CB = 0.1 µF, VCM = VD/2, unless otherwise noted.
Table 3. VS = 2.7 V, TA = 25°C, RL = 8 Ω, CB = 0.1 µF, VCM = VS/2, unless otherwise noted.
ABSOLUTE MAXIMUM RATINGS Absolute maximum ratings apply at 25°C, unless otherwise
noted.
Table 4.
Table 5. 1 For the LFCSP, θJA is measured with exposed lead frame soldered to the
printed circuit board.
2 For the SOIC, θJA is measured with the device soldered to a 4-layer printed
circuit board.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; the functional operation of the device at these or
any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may
affect device reliability.
ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
PIN CONFIGURATIONS
SHUTDOWN
VOUTA
VOUTB
BYPASS
IN+
IN–00358-002
SHUTDOWN
VOUTA
VOUTB
BYPASS
IN+
IN–00358-003
Figure 2. 8-Lead SOIC (SO-8)
Figure 3. 8-Lead LFCSP (CP-8)
TYPICAL PERFORMANCE CHARACTERISTICS
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 4. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 5. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 6. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 7. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 8. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 9. THD + N vs. Frequency
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 10. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 11. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 12. THD + N vs. POUTPUT
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 13. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 14. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 15. THD + N vs. Frequency
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 16. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 17. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 18. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 19. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 20. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.0110020k1k10k
0.1Figure 21. THD + N vs. Frequency
POUTPUT (W)
THD + N (%)
20n0.12
0.1Figure 22. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 23. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 24. THD + N vs. POUTPUT
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 25. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 26. THD + N vs. Frequency
FREQUENCY (Hz)
THD + N (%)
0.012010020k1k10k
0.1Figure 27. THD + N vs. Frequency
POUTPUT (W)
THD + N (%)
20n0.12
0.1Figure 28. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
0.0120n0.12
0.1Figure 29. THD + N vs. POUTPUT
POUTPUT (W)
THD + N (%)
20n0.12
0.1Figure 30. THD + N vs. POUTPUT
AMBIENT TEMPERATURE (°C)
XIM
POW
ISSIPA
TION–40–30–20–100103070204050609080110100120
Figure 31. Maximum Power Dissipation vs. Ambient Temperature
SHUTDOWN VOLTAGE AT PIN 1 (V)
CURRE
NT (
10kFigure 32. Supply Current vs. Shutdown Voltage
SUPPLY VOLTAGE (V)
CURRE
NT (mA)Figure 33. Supply Current vs. Supply Voltage