IC Phoenix
 
Home ›  SS87 > SPC560P40L3CEFAR,32-bit Power Architecture MCU for Automotive Chassis and Safety Applications
SPC560P40L3CEFAR Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
SPC560P40L3CEFARSTN/a138avai32-bit Power Architecture MCU for Automotive Chassis and Safety Applications


SPC560P40L3CEFAR ,32-bit Power Architecture MCU for Automotive Chassis and Safety ApplicationsFeatures■ Up to 64 MHz, single issue, 32-bit CPU core complex (e200z0h)®– Compliant with Power Arch ..
SPC560P50L3 ,32-bit Power Architecture MCU for Automotive Chassis and Safety ApplicationsFeatures■ 64 MHz, single issue, 32-bit CPU core complex (e200z0h)®– Compliant with Power Architectu ..
SPC563M64L5COAR ,32-bit Power Architecture MCU for Automotive Powertrain ApplicationsFeatures20 mm x 20 mm 14 mm x 14 mm®■ Single issue, 32-bit Power Architecture Book E compliant e200 ..
SPC563M64L5COAY ,32-bit Power Architecture MCU for Automotive Powertrain Applicationselectrical characteristics . 1024.15 AC specifications . . 1044.15.1 Pad AC specifications ..
SPC5673FF3MVR3 , MPC5674F Microcontroller Data Sheet
SPC5674FF3MVR3 , MPC5674F Microcontroller Data Sheet
SST39VF040-70-4C-WH , 512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash
SST39VF040-70-4C-WH , 512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash
SST39VF040-70-4I-WH , 512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash
SST39VF040-90-4C-NH , 512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash
SST39VF040-90-4C-NH , 512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash
SST39VF040-90-4C-WH , 512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash


SPC560P40L3CEFAR
32-bit Power Architecture MCU for Automotive Chassis and Safety Applications
September 2013 Doc ID 16100 Rev 7 1/103
SPC560P34L1, SPC560P34L3
SPC560P40L1, SPC560P40L3

32-bit Power Architecture® based MCU with 320 KB Flash memory
and 20 KB RAM for automotive chassis and safety applications
Datasheet − production data
Features
Up to 64 MHz, single issue, 32-bit CPU core
complex (e200z0h) Compliant with Power Architecture®
embedded category Variable Length Encoding (VLE) Memory organization Up to 256 KB on-chip code flash memory
with ECC and erase/program controller Additional 64(4× 16) KB on-chip data
flash memory with ECC for EEPROM
emulation Up to 20 KB on-chip SRAM with ECC Fail-safe protection Programmable watchdog timer Non-maskable interrupt Fault collection unit Nexus Class 1 interface Interrupts and events 16-channel eDMA controller 16 priority level controller Up to 25 external interrupts PIT implements four 32-bit timers 120 interrupts are routed via INTC General purpose I/Os Individually programmable as input, output
or special function 37 on LQFP64 64 on LQFP100 1 general purpose eTimer unit 6 timers each with up/down capabilities 16-bit resolution, cascadable counters Quadrature decode with rotation direction
flag Double buffer input capture and output
compare Communications interfaces 2 LINFlex channels (1× Master/Slave, 1×
Master only) Up to 3 DSPI channels with automatic chip
select generation (up to 8/4/4 chip selects) Up to 2 FlexCAN interface (2.0B Active)
with 32 message buffers 1 safety port based on FlexCAN with 32
message buffers and up to 8 Mbit/s at MHz capability usable as second CAN
when not used as safety port One 10-bit analog-to-digital converter (ADC) Up to 16 input channels (16 on LQFP100 / on LQFP64) Conversion time < 1 µs including sampling
time at full precision Programmable Cross Triggering Unit (CTU) 4 analog watchdogs with interrupt
capability On-chip CAN/UART bootstrap loader with Boot
Assist Module (BAM) 1 FlexPWM unit: 8 complementary or
independent outputs with ADC synchronization
signals
Table 1. Device summary
Contents SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
2/103 Doc ID 16100 Rev 7
Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 High performance e200z0 core processor . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.4 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.5 Static random access memory (SRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.7 System status and configuration module (SSCM) . . . . . . . . . . . . . . . . . 16
1.5.8 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.9 Frequency-modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 17
1.5.10 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.11 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.12 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.13 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.14 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.15 Fault collection unit (FCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.16 System integration unit – Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.17 Boot and censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.18 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.19 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.20 Controller area network (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.21 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.22 Serial communication interface module (LINFlex) . . . . . . . . . . . . . . . . . 22
1.5.23 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 23
1.5.24 Pulse width modulator (FlexPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.25 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.26 Analog-to-digital converter (ADC) module . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.27 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.28 Nexus Development Interface (NDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Contents
Doc ID 16100 Rev 7 3/103
1.5.29 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.30 IEEE 1149.1 JTAG controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.31 On-chip voltage regulator (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Pin multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.2 General notes for specifications at maximum junction temperature . . . 52
3.6 Electromagnetic interference (EMI) characteristics . . . . . . . . . . . . . . . . . 54
3.7 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 54
3.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 54
3.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 54
3.8.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 57
3.9 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10.1 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10.2 DC electrical characteristics (5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.10.3 DC electrical characteristics (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.10.4 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . 63
3.10.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.11 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.13 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 68
3.14 Analog-to-digital converter (ADC) electrical characteristics . . . . . . . . . . . 68
Contents SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
4/103 Doc ID 16100 Rev 7
3.14.1 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.14.2 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.15 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.15.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.15.2 Flash memory power supply DC characteristics . . . . . . . . . . . . . . . . . . 75
3.15.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.17 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.17.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.17.4 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.17.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 LQFP100 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 LQFP64 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Appendix A Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 List of tables
Doc ID 16100 Rev 7 5/103
List of tables

Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. SPC560P34/SPC560P40 device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. SPC560P40 device configuration differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. SPC560P34/SPC560P40 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6. System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 7. Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 8. Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 9. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 10. Recommended operating conditions (5.0V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 11. Recommended operating conditions (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 12. LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 13. EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 14. ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 15. Approved NPN ballast components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 16. Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 17. Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 18. PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 19. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . . . . . . . . . 60
Table 20. Supply current (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 21. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . . . . . . . . . 62
Table 22. Supply current (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 23. I/O supply segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 24. I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 25. Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . 65
Table 26. Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . 66
Table 27. Input clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 28. FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 29. 16 MHz RC oscillator electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 30. ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 31. Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 32. Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 33. Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 34. Flash memory power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 35. Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 36. Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 37. RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 38. JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 39. Nexus debug port timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 40. External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 41. DSPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 42. LQFP100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 43. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 44. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 45. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
List of figures SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
6/103 Doc ID 16100 Rev 7
List of figures

Figure 1. Block diagram (SPC560P40 full-featured configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. 64-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 3. 64-pin LQFP pinout – Airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4. 100-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5. 100-pin LQFP pinout – Airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 6. Power supplies constraints (–0.3V≤ VDD_HV_IOx≤ 6.0 V). . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 7. Independent ADC supply (–0.3V≤ VDD_HV_REG≤ 6.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 8. Power supplies constraints (3.0V≤ VDD_HV_IOx≤ 5.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 9. Independent ADC supply (3.0V≤ VDD_HV_REG≤ 5.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 10. Voltage regulator configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 11. Power-up typical sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 12. Power-down typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 13. Brown-out typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 14. Input DC electrical characteristics definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15. ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 16. Input equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 17. Transient behavior during sampling phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 18. Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 19. Pad output delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 20. Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 21. Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 22. JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 23. JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 24. JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 25. Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 26. Nexus event trigger and test clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 27. Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 28. External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 29. DSPI classic SPI timing – Master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 30. DSPI classic SPI timing – Master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 31. DSPI classic SPI timing – Slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 32. DSPI classic SPI timing – Slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 33. DSPI modified transfer format timing – Master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 34. DSPI modified transfer format timing – Master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 35. DSPI modified transfer format timing – Slave, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 37. DSPI PCS Strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 38. LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 39. LQFP64 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 40. Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 7/103
1 Introduction
1.1 Document overview

This document provides electrical specifications, pin assignments, and package diagrams
for the SPC560P34/40 series of microcontroller units (MCUs). It also describes the device
features and highlights important electrical and physical characteristics. For functional
characteristics, refer to the device reference manual.
1.2 Description

This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest
achievement in integrated automotive application controllers. It belongs to an expanding
range of automotive-focused products designed to address chassis applications—
specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)—
as well as airbag applications.
This family is one of a series of next-generation integrated automotive microcontrollers
based on the Power Architecture technology.
The advanced and cost-efficient host processor core of this automotive controller family
complies with the Power Architecture embedded category. It operates at speeds of up to MHz and offers high performance processing optimized for low power consumption. It
capitalizes on the available development infrastructure of current Power Architecture
devices and is supported with software drivers, operating systems and configuration code to
assist with users implementations.
1.3 Device comparison

Table 2 provides a summary of different members of the SPC560P34/SPC560P40 family
and their features—relative to full-featured version—to enable a comparison among the
family members and an understanding of the range of functionality offered within this family.
Table 2. SPC560P34/SPC560P40 device comparison
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
8/103 Doc ID 16100 Rev 7
SPC560P34/SPC560P40 is available in two configurations having different features: Full-
featured and airbag. Table 3 shows the main differences between the two versions of the
SPC560P40 MCU. Each FlexCAN module has 32 message buffers. One FlexCAN module can act as a safety port with a bit rate as high as 8 Mbit/s at 64 MHz. The different supply voltages vary according to the part number ordered.
Table 2. SPC560P34/SPC560P40 device comparison (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 9/103

1.4 Block diagram

Figure 1 shows a top-level block diagram of the SPC560P34/SPC560P40 MCU. Table2
summarizes the functions of the blocks.
Table 3. SPC560P40 device configuration differences
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
10/103 Doc ID 16100 Rev 7
Figure 1. Block diagram (SPC560P40 full-featured configuration)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 11/103
Table 4. SPC560P34/SPC560P40 series block summary
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
12/103 Doc ID 16100 Rev 7 AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org)
Table 4. SPC560P34/SPC560P40 series block summary (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 13/103
1.5 Feature details
1.5.1 High performance e200z0 core processor

The e200z0 Power Architecture core provides the following features: High performance e200z0 core processor for managing peripherals and interrupts Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU Harvard architecture Variable length encoding (VLE), allowing mixed 16- and 32-bit instructions Results in smaller code size footprint Minimizes impact on performance Branch processing acceleration using lookahead instruction buffer Load/store unit 1-cycle load latency Misaligned access support No load-to-use pipeline bubbles Thirty-two 32-bit general purpose registers (GPRs) Separate instruction bus and load/store bus Harvard architecture Hardware vectored interrupt support Reservation instructions for implementing read-modify-write constructs Long cycle time instructions, except for guarded loads, do not increase interrupt
latency Extensive system development support through Nexus debug port Non-maskable interrupt support
1.5.2 Crossbar switch (XBAR)

The XBAR multi-port crossbar switch supports simultaneous connections between three
master ports and three slave ports. The crossbar supports a 32-bit address bus width and a
32-bit data bus width.
The crossbar allows for two concurrent transactions to occur from any master port to any
slave port; but one of those transfers must be an instruction fetch from internal flash
memory. If a slave port is simultaneously requested by more than one master port,
arbitration logic will select the higher priority master and grant it ownership of the slave port.
All other masters requesting that slave port will be stalled until the higher priority master
completes its transactions. Requesting masters will be treated with equal priority and will be
granted access a slave port in round-robin fashion, based upon the ID of the last master to
be granted access.
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
14/103 Doc ID 16100 Rev 7
The crossbar provides the following features: 3 master ports: e200z0 core complex instruction port e200z0 core complex Load/Store Data port
–eDMA 3 slave ports: Flash memory (Code and Data)
–SRAM Peripheral bridge 32-bit internal address, 32-bit internal data paths Fixed Priority Arbitration based on Port Master Temporary dynamic priority elevation of masters
1.5.3 Enhanced direct memory access (eDMA)

The enhanced direct memory access (eDMA) controller is a second-generation module
capable of performing complex data movements via 16 programmable channels, with
minimal intervention from the host processor. The hardware micro architecture includes a
DMA engine which performs source and destination address calculations, and the actual
data movement operations, along with an SRAM-based memory containing the transfer
control descriptors (TCD) for the channels.
The eDMA module provides the following features: 16 channels support independent 8-, 16- or 32-bit single value or block transfers Supports variable-sized queues and circular queues Source and destination address registers are independently configured to either post-
increment or to remain constant Each transfer is initiated by a peripheral, CPU, or eDMA channel request Each eDMA channel can optionally send an interrupt request to the CPU on completion
of a single value or block transfer DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer
and CTU Programmable DMA channel multiplexer allows assignment of any DMA source to any
available DMA channel with as many as 30 request sources eDMA abort operation through software
1.5.4 Flash memory

The SPC560P34/SPC560P40 provides 320 KB of programmable, non-volatile, flash
memory. The non-volatile memory (NVM) can be used for instruction and/or data storage.
The flash memory module is interfaced to the system bus by a dedicated flash memory
controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data
interface to flash memory. The module contains four 128-bit wide prefetch buffers. Prefetch
buffer hits allow no-wait responses. Normal flash memory array accesses are registered
and are forwarded to the system bus on the following cycle, incurring two wait-states.
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 15/103
The flash memory module provides the following features: As much as 320 KB flash memory 6 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 128 KB) code flash memory 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash memory Full Read-While-Write (RWW) capability between code flash memory and data
flash memory Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch
buffers can be configured to prefetch code or data or both) Typical flash memory access time: no wait-state for buffer hits, 2 wait-states for page
buffer miss at 64 MHz Hardware managed flash memory writes handled by 32-bit RISC Krypton engine Hardware and software configurable read and write access protections on a per-master
basis Configurable access timing allowing use in a wide range of system frequencies Multiple-mapping support and mapping-based block access timing (up to 31 additional
cycles) allowing use for emulation of other memory types Software programmable block program/erase restriction control Erase of selected block(s) Read page sizes Code flash memory: 128 bits (4 words) Data flash memory: 32 bits (1 word) ECC with single-bit correction, double-bit detection for data integrity Code flash memory: 64-bit ECC Data flash memory: 32-bit ECC Embedded hardware program and erase algorithm Erase suspend and program abort Censorship protection scheme to prevent flash memory content visibility Hardware support for EEPROM emulation
1.5.5 Static random access memory (SRAM)

The SPC560P34/SPC560P40 SRAM module provides up to 20 KB of general-purpose
memory.
The SRAM module provides the following features: Supports read/write accesses mapped to the SRAM from any master Up to 20 KB general purpose SRAM Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of
memory Typical SRAM access time: no wait-state for reads and 32-bit writes; 1 wait-state for 8-
and 16-bit writes if back-to-back with a read to same memory block
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
16/103 Doc ID 16100 Rev 7
1.5.6 Interrupt controller (INTC)

The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt
requests, suitable for statically scheduled hard real-time systems. The INTC handles 128
selectable-priority interrupt sources.
For high-priority interrupt requests, the time from the assertion of the interrupt request by the
peripheral to the execution of the interrupt service routine (ISR) by the processor has been
minimized. The INTC provides a unique vector for each interrupt request source for quick
determination of which ISR has to be executed. It also provides a wide number of priorities
so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the
appropriate priorities for each source of interrupt request, the priority of each interrupt
request is software configurable.
When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks
which share the same resource can not preempt each other.
The INTC provides the following features: Unique 9-bit vector for each separate interrupt source 8 software triggerable interrupt sources 16 priority levels with fixed hardware arbitration within priority levels for each interrupt
source Ability to modify the ISR or task priority: modifying the priority can be used to implement
the priority ceiling protocol for accessing shared resources. 1 external high priority interrupt (NMI) directly accessing the main core and I/O
processor (IOP) critical interrupt mechanism
1.5.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.
The SSCM includes these features: System configuration and status Memory sizes/status Device mode and security status Determine boot vector Search code flash for bootable sector
–DMA status Debug status port enable and selection Bus and peripheral abort enable/disable
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 17/103
1.5.8 System clocks and clock generation

The following list summarizes the system clock and clock generation on the
SPC560P34/SPC560P40: Lock detect circuitry continuously monitors lock status Loss of clock (LOC) detection for PLL outputs Programmable output clock divider (÷1, ÷2, ÷4, ÷8) FlexPWM module and eTimer module running at the same frequency as the e200z0h
core Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency
trimming by user application
1.5.9 Frequency-modulated phase-locked loop (FMPLL)

The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input
clock. Further, the FMPLL supports programmable frequency modulation of the system
clock. The PLL multiplication factor, output clock divider ratio are all software configurable.
The FMPLL has the following major features: Input clock frequency: 4–40 MHz Maximum output frequency: 64 MHz Voltage controlled oscillator (VCO)—frequency 256–512 MHz Reduced frequency divider (RFD) for reduced frequency operation without forcing the
FMPLL to relock Frequency-modulated PLL Modulation enabled/disabled through software Triangle wave modulation Programmable modulation depth (±0.25% to ±4% deviation from center frequency):
programmable modulation frequency dependent on reference frequency Self-clocked mode (SCM) operation
1.5.10 Main oscillator

The main oscillator provides these features: Input frequency range: 4–40 MHz Crystal input mode or oscillator input mode PLL reference
1.5.11 Internal RC oscillator

This device has an RC ladder phase-shift oscillator. The architecture uses constant current
charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap
reference voltage.
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
18/103 Doc ID 16100 Rev 7
The RC oscillator provides these features: Nominal frequency 16 MHz ±5% variation over voltage and temperature after process trim Clock output of the RC oscillator serves as system clock source in case loss of lock or
loss of clock is detected by the PLL RC oscillator is used as the default system clock during startup
1.5.12 Periodic interrupt timer (PIT)

The PIT module implements these features: 4 general-purpose interrupt timers 32-bit counter resolution Clocked by system clock frequency Each channel usable as trigger for a DMA request
1.5.13 System timer module (STM)

The STM implements these features: One 32-bit up counter with 8-bit prescaler Four 32-bit compare channels Independent interrupt source for each channel Counter can be stopped in debug mode
1.5.14 Software watchdog timer (SWT)

The SWT has the following features: 32-bit time-out register to set the time-out period Programmable selection of window mode or regular servicing Programmable selection of reset or interrupt on an initial time-out Master access protection Hard and soft configuration lock bits Reset configuration inputs allow timer to be enabled out of reset
1.5.15 Fault collection unit (FCU)

The FCU provides an independent fault reporting mechanism even if the CPU is
malfunctioning.
The FCU module has the following features: FCU status register reporting the device status Continuous monitoring of critical fault signals User selection of critical signals from different fault sources inside the device Critical fault events trigger 2 external pins (user selected signal protocol) that can be
used externally to reset the device and/or other circuitry (for example, a safety relay) Faults are latched into a register
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 19/103
1.5.16 System integration unit – Lite (SIUL)

The SPC560P34/SPC560P40 SIUL controls MCU pad configuration, external interrupt,
general purpose I/O (GPIO), and internal peripheral multiplexing.
The pad configuration block controls the static electrical characteristics of I/O pins. The
GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.
The SIUL provides the following features: Centralized general purpose input output (GPIO) control of up to 49 input/output pins
and 16 analog input-only pads (package dependent) All GPIO pins can be independently configured to support pull-up, pull-down, or no pull Reading and writing to GPIO supported both as individual pins and 16-bit wide ports All peripheral pins, except ADC channels, can be alternatively configured as both
general purpose input or output pins ADC channels support alternative configuration as general purpose inputs Direct readback of the pin value is supported on all pins through the SIUL Configurable digital input filter that can be applied to some general purpose input pins
for noise elimination Up to 4 internal functions can be multiplexed onto 1 pin
1.5.17 Boot and censorship

Different booting modes are available in the SPC560P34/SPC560P40: booting from internal
flash memory and booting via a serial link.
The default booting scheme uses the internal flash memory (an internal pull-down resistor is
used to select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the
boot assist module software).
A censorship scheme is provided to protect the content of the flash memory and offer
increased security for the entire device.
A password mechanism is designed to grant the legitimate user access to the non-volatile
memory.
Boot assist module (BAM)

The BAM is a block of read-only memory that is programmed once and is identical for all
SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed
every time the device is powered on if the alternate boot mode has been selected by the
user.
The BAM provides the following features: Serial bootloading via FlexCAN or LINFlex Ability to accept a password via the used serial communication channel to grant the
legitimate user access to the non-volatile memory
1.5.18 Error correction status module (ECSM)

The ECSM provides a myriad of miscellaneous control functions regarding program-visible
information about the platform configuration and revision levels, a reset status register, a
software watchdog timer, wakeup control for exiting sleep modes, and information on
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
20/103 Doc ID 16100 Rev 7
platform memory errors reported by error-correcting codes and/or generic access error
information for certain processor cores.
The Error Correction Status Module supports a number of miscellaneous control functions
for the platform. The ECSM includes these features: Registers for capturing information on platform memory errors if error-correcting codes
(ECC) are implemented For test purposes, optional registers to specify the generation of double-bit memory
errors are enabled on the SPC560P34/SPC560P40.
The sources of the ECC errors are: Flash memory SRAM
1.5.19 Peripheral bridge (PBRIDGE)

The PBRIDGE implements the following features: Duplicated periphery Master access privilege level per peripheral (per master: read access enable; write
access enable) Write buffering for peripherals Checker applied on PBRIDGE output toward periphery Byte endianess swap capability
1.5.20 Controller area network (FlexCAN)

The SPC560P34/SPC560P40 MCU contains one controller area network (FlexCAN)
module. This module is a communication controller implementing the CAN protocol
according to Bosch Specification version 2.0B. The CAN protocol was designed to be used
primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-
time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness
and required bandwidth. The FlexCAN module contains 32 message buffers.
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 21/103
The FlexCAN module provides the following features: Full implementation of the CAN protocol specification, version 2.0B Standard data and remote frames Extended data and remote frames Up to 8-bytes data length Programmable bit rate up to 1 Mbit/s 32 message buffers of up to 8-bytes data length Each message buffer configurable as Rx or Tx, all supporting standard and extended
messages Programmable loop-back mode supporting self-test operation 3 programmable mask registers Programmable transmit-first scheme: lowest ID or lowest buffer number Time stamp based on 16-bit free-running timer Global network time, synchronized by a specific message Maskable interrupts Independent of the transmission medium (an external transceiver is assumed) High immunity to EMI Short latency time due to an arbitration scheme for high-priority messages Transmit features Supports configuration of multiple mailboxes to form message queues of scalable
depth Arbitration scheme according to message ID or message buffer number Internal arbitration to guarantee no inner or outer priority inversion Transmit abort procedure and notification Receive features Individual programmable filters for each mailbox 8 mailboxes configurable as a 6-entry receive FIFO 8 programmable acceptance filters for receive FIFO Programmable clock source System clock Direct oscillator clock to avoid PLL jitter
1.5.21 Safety port (FlexCAN)

The SPC560P34/SPC560P40 MCU has a second CAN controller synthesized to run at high
bit rates to be used as a safety port. The CAN module of the safety port provides the
following features: Identical to the FlexCAN module Bit rate up to 8 Mbit/s at 64 MHz CPU clock using direct connection between CAN
modules (no physical transceiver required) 32 message buffers of up to 8-bytes data length Can be used as a second independent CAN module
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
22/103 Doc ID 16100 Rev 7
1.5.22 Serial communication interface module (LINFlex)

The LINFlex (local interconnect network flexible) on the SPC560P34/SPC560P40 features
the following: Supports LIN Master mode (both instances), LIN Slave mode (only one instance) and
UART mode LIN state machine compliant to LIN1.3, 2.0 and 2.1 specifications Handles LIN frame transmission and reception without CPU intervention LIN features Autonomous LIN frame handling Message buffer to store Identifier and up to 8 data bytes Supports message length of up to 64 bytes Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing,
checksum, and time-out) Classic or extended checksum calculation Configurable Break duration of up to 36-bit times Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional) Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection Interrupt-driven operation with 16 interrupt sources LIN slave mode features: Autonomous LIN header handling Autonomous LIN response handling Optional discarding of irrelevant LIN responses using ID filter UART mode: Full-duplex operation Standard non return-to-zero (NRZ) mark/space format Data buffers with 4-byte receive, 4-byte transmit Configurable word length (8-bit or 9-bit words) Error detection and flagging Parity, Noise and Framing errors Interrupt-driven operation with four interrupt sources Separate transmitter and receiver CPU interrupt sources 16-bit programmable baud-rate modulus counter and 16-bit fractional 2 receiver wake-up methods
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 23/103
1.5.23 Deserial serial peripheral interface (DSPI)

The deserial serial peripheral interface (DSPI) module provides a synchronous serial
interface for communication between the SPC560P34/SPC560P40 MCU and external
devices.
The DSPI modules provide these features: Full duplex, synchronous transfers Master or slave operation Programmable master bit rates Programmable clock polarity and phase End-of-transmission interrupt flag Programmable transfer baud rate Programmable data frames from 4 to 16 bits Up to 8 chip select lines available:
–8 on DSPI_0 4 each on DSPI_1 and DSPI_2 8 clock and transfer attributes registers Chip select strobe available as alternate function on one of the chip select pins for
deglitching FIFOs for buffering up to 4 transfers on the transmit and receive side Queueing operation possible through use of the I/O processor or eDMA General purpose I/O functionality on pins when not used for SPI
1.5.24 Pulse width modulator (FlexPWM)

The pulse width modulator module (PWM) contains four PWM submodules each of which is
set up to control a single half-bridge power stage. There are also three fault channels.
This PWM is capable of controlling most motor types: AC induction motors (ACIM),
permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors
(BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors.
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
24/103 Doc ID 16100 Rev 7
The FlexPWM block implements the following features: 16-bit resolution for center, edge-aligned, and asymmetrical PWMs Clock frequency same as that used for e200z0h core PWM outputs can operate as complementary pairs or independent channels Can accept signed numbers for PWM generation Independent control of both edges of each PWM output Synchronization to external hardware or other PWM supported Double buffered PWM registers Integral reload rates from 1 to 16 Half cycle reload capability Multiple ADC trigger events can be generated per PWM cycle via hardware Write protection for critical registers Fault inputs can be assigned to control multiple PWM outputs Programmable filters for fault inputs Independently programmable PWM output polarity Independent top and bottom deadtime insertion Each complementary pair can operate with its own PWM frequency and deadtime
values Individual software-control for each PWM output All outputs can be programmed to change simultaneously via a “Force Out” event PWMX pin can optionally output a third PWM signal from each submodule Channels not used for PWM generation can be used for buffered output compare
functions Channels not used for PWM generation can be used for input capture functions Enhanced dual-edge capture functionality eDMA support with automatic reload 2 fault inputs Capture capability for PWMA, PWMB, and PWMX channels not supported
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 25/103
1.5.25 eTimer

The SPC560P34/SPC560P40 includes one eTimer module which provides six 16-bit
general purpose up/down timer/counter units with the following features: Clock frequency same as that used for the e200z0h core Individual channel capability Input capture trigger Output compare Double buffer (to capture rising edge and falling edge) Separate prescaler for each counter Selectable clock source 0–100% pulse measurement Rotation direction flag (quad decoder mode) Maximum count rate External event counting: max. count rate = peripheral clock/2 Internal clock counting: max. count rate = peripheral clock Counters are: Cascadable Preloadable Programmable count modulo Quadrature decode capabilities Counters can share available input pins Count once or repeatedly Pins available as GPIO when timer functionality not in use
1.5.26 Analog-to-digital converter (ADC) module

The ADC module provides the following features:
Analog part: 1 on-chip analog-to-digital converter 10-bit AD resolution 1 sample and hold unit Conversion time, including sampling time, less than 1 µs (at full precision) Typical sampling time is 150 ns minimum (at full precision) DNL/INL ±1 LSB
–TUE < 1.5 LSB Single-ended input signal up to 3.3 V/5.0V 3.3 V/5.0 V input reference voltage ADC and its reference can be supplied with a voltage independent from VDDIO ADC supply can be equal or higher than VDDIO ADC supply and ADC reference are not independent from each other (both
internally bonded to same pad) Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
26/103 Doc ID 16100 Rev 7
Digital part: 16 input channels 4 analog watchdogs comparing ADC results against predefined levels (low, high,
range) before results are stored in the appropriate ADC result location 2 modes of operation: Motor Control mode or Regular mode Regular mode features Register based interface with the CPU: control register, status register and 1 result
register per channel ADC state machine managing 3 request flows: regular command, hardware
injected command and software injected command Selectable priority between software and hardware injected commands DMA compatible interface CTU-controlled mode features Triggered mode only 4 independent result queues (1×16 entries, 2×8 entries, 1×4 entries) Result alignment circuitry (left justified and right justified) 32-bit read mode allows to have channel ID on one of the 16-bit part DMA compatible interfaces
1.5.27 Cross triggering unit (CTU)

The cross triggering unit allows automatic generation of ADC conversion requests on user
selected conditions without CPU load during the PWM period and with minimized CPU load
for dynamic configuration.
It implements the following features: Double buffered trigger generation unit with up to 8 independent triggers generated
from external triggers Trigger generation unit configurable in sequential mode or in triggered mode Each trigger can be appropriately delayed to compensate the delay of external low
pass filter Double buffered global trigger unit allowing eTimer synchronization and/or ADC
command generation Double buffered ADC command list pointers to minimize ADC-trigger unit update Double buffered ADC conversion command list with up to 24 ADC commands Each trigger capable of generating consecutive commands ADC conversion command allows to control ADC channel, single or synchronous
sampling, independent result queue selection
1.5.28 Nexus Development Interface (NDI)

The NDI (Nexus Development Interface) block is compliant with Nexus Class 1 of the IEEE-
ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring
external address and data pins for internal visibility. The NDI block is an integration of
several individual Nexus blocks that are selected to provide the development support
interface for this device. The NDI block interfaces to the host processor and internal busses
to provide development support as per the IEEE-ISTO 5001-2003 Nexus Class 1 standard.
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Doc ID 16100 Rev 7 27/103
The development support provided includes access to the MCU’s internal memory map and
access to the processor’s internal registers.
The NDI provides the following features: Configured via the IEEE 1149.1 All Nexus port pins operate at VDDIO (no dedicated power supply) Nexus Class 1 supports Static debug
1.5.29 Cyclic redundancy check (CRC)

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The
CRC module features: Support for CRC-16-CCITT (x25 protocol): x16 + x12 + x5 + 1 Support for CRC-32 (Ethernet protocol): x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 Zero wait states for each write/read operations to the CRC_CFG and CRC_INP
registers at the maximum frequency
1.5.30 IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and
connectivity while remaining transparent to system logic when not in test mode. All data
input to and output from the JTAGC block is communicated in serial format. The JTAGC
block is compliant with the IEEE standard.
The JTAG controller provides the following features: IEEE test access port (TAP) interface 4 pins (TDI, TMS, TCK, TDO) Selectable modes of operation include JTAGC/debug or normal system operation. 5-bit instruction register that supports the following IEEE 1149.1-2001 defined
instructions: BYPASS IDCODE
–EXTEST SAMPLE SAMPLE/PRELOAD 5-bit instruction register that supports the additional following public instructions: ACCESS_AUX_TAP_NPC ACCESS_AUX_TAP_ONCE 3 test data registers: Bypass register Boundary scan register (size parameterized to support a variety of boundary scan
chain lengths) Device identification register TAP controller state machine that controls the operation of the data registers,
instruction register and associated circuitry
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
28/103 Doc ID 16100 Rev 7
1.5.31 On-chip voltage regulator (VREG)

The on-chip voltage regulator module provides the following features: Uses external NPN (negative-positive-negative) transistor Regulates external 3.3 V/5.0 V down to 1.2 V for the core logic Low voltage detection on the internal 1.2 V and I/O voltage 3.3V
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 29/103 Package pinouts and signal descriptions
2.1 Package pinouts

The LQFP pinouts are shown in the following figures. For pin signal descriptions, please
refer to Table7.

Figure 2. 64-pin LQFP pinout – Full featured configuration (top view)
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
30/103 Doc ID 16100 Rev 7

Figure 3. 64-pin LQFP pinout – Airbag configuration (top view)


SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 31/103

Figure 4. 100-pin LQFP pinout – Full featured configuration (top view)
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
32/103 Doc ID 16100 Rev 7

Figure 5. 100-pin LQFP pinout – Airbag configuration (top view)



SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 33/103
2.2 Pin description

The following sections provide signal descriptions and related information about the
functionality and configuration of the SPC560P34/SPC560P40 devices.
2.2.1 Power supply and reference voltage pins

Table 5 lists the power supply and reference voltage for the SPC560P34/SPC560P40
devices.
Table 5. Supply pins
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
34/103 Doc ID 16100 Rev 7
2.2.2 System pins

Table 6 and Table 7 contain information on pin functions for the SPC560P34/SPC560P40
devices. The pins listed in Table 6 are single-function pins. The pins shown in Table 7 are
multi-function pins, programmable via their respective pad configuration register (PCR)
values.
Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding
connection on VDD_HV_ADCx/VSS_HV_ADCx pins.
Table 5. Supply pins (continued)
Table 6. System pins
SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 35/103
2.2.3 Pin multiplexing

Table 7 defines the pin list and muxing for the SPC560P34/SPC560P40 devices.
Each row of Table 7 shows all the possible ways of configuring each pin, via alternate
functions. The default function assigned to each pin after reset is the ALT0 function.
SPC560P34/SPC560P40 devices provide three main I/O pad types, depending on the
associated functions: Slow pads are the most common, providing a compromise between transition time and
low electromagnetic emission. Medium pads provide fast enough transition for serial communication channels with
controlled current to reduce electromagnetic emission. Fast pads provide maximum speed. They are used for improved NEXUS debugging
capability.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at
the cost of reducing AC performance. For more information, see “Pad AC Specifications” in
the device datasheet.
Table 7. Pin muxing
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
36/103 Doc ID 16100 Rev 7
Table 7. Pin muxing (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 37/103
Table 7. Pin muxing (continued)
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
38/103 Doc ID 16100 Rev 7
Table 7. Pin muxing (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 39/103
Table 7. Pin muxing (continued)
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
40/103 Doc ID 16100 Rev 7
Table 7. Pin muxing (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 41/103
Table 7. Pin muxing (continued)
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
42/103 Doc ID 16100 Rev 7
Table 7. Pin muxing (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Doc ID 16100 Rev 7 43/103
Table 7. Pin muxing (continued)
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
44/103 Doc ID 16100 Rev 7 ALT0 is the primary (default) function for each port after reset. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA=00→ ALT0;
PCR.PA=01→ ALT1; PCR.PA=10→ ALT2; PCR.PA=11→ ALT3. This is intended to select the output functions; to
use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA
bitfields. For this reason, the value corresponding to an input only function is reported as “—”. Module included on the MCU. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMIO.PADSELx bitfields inside the SIUL module. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register. ADC0.AN emulates ADC1.AN. This feature is used to provide software compatibility between SPC560P34/SPC560P40
and SPC560P50. Refer to ADC chapter of reference manual for more details.
Table 7. Pin muxing (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Doc ID 16100 Rev 7 45/103
3 Electrical characteristics
3.1 Introduction

This section contains device electrical characteristics as well as temperature and power
considerations.
This microcontroller contains input protection against damage due to high static voltages.
However, it is advisable to take precautions to avoid application of any voltage higher than
the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD
or VSS). This can be done by the internal pull-up or pull-down resistors, which are provided
by the device for most general purpose pins.
The following tables provide the device characteristics and its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
Caution:

All of the following parameter values can vary depending on the application and must be
confirmed during silicon characterization or silicon reliability trial.
3.2 Parameter classification

The electrical parameters are guaranteed by various methods. To give the customer a better
understanding, the classifications listed in Table 8 are used and the parameters are tagged
accordingly in the tables where appropriate.

Note: The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
Table 8. Parameter classifications
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
46/103 Doc ID 16100 Rev 7
3.3 Absolute maximum ratings

Table 9. Absolute maximum ratings(1)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 6 shows the constraints of the different power supplies.
Figure 6. Power supplies constraints (–0.3V
VDD_HV_IOx 6.0V)
The SPC560P34/SPC560P40 supply architecture allows the ADC supply to be managed
independently from the standard VDD_HV supply. Figure 7 shows the constraints of the ADC Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings
only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device
reliability or cause permanent damage to the device. Absolute maximum voltages are currently maximum burn-in voltages. The difference between each couple of voltage supplies must be less than 300 mV, ⏐VDD_HV_IOy –VDD_HV_IOx⏐< 300 mV. Guaranteed by device validation. Minimum value of TVDD must be guaranteed until VDD_HV_REG reaches 2.6 V (maximum value of VPORH) Only when VDD_HV_IOx <5.2V
Table 9. Absolute maximum ratings(1) (continued)
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

Figure 7. Independent ADC supply (–0.3V
VDD_HV_REG 6.0V)
3.4 Recommended operating conditions


Table 10. Recommended operating conditions (5.0V)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Doc ID 16100 Rev 7 49/103
Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, ADC electrical characteristics and
I/Os DC electrical specification may not be guaranteed. The difference between each couple of voltage supplies must be less than 100 mV, ⏐VDD_HV_IOy–
VDD_HV_IOx⏐< 100 mV. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-
chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high
voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast
emitter. The low voltage supplies (VDD_LV_xxx) are not all independent.
– VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low
voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted.
– VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx.
Table 10. Recommended operating conditions (5.0 V) (continued)
Table 11. Recommended operating conditions (3.3V)
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
50/103 Doc ID 16100 Rev 7
Figure 8 shows the constraints of the different power supplies. Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and
I/Os DC electrical specification may not be guaranteed. The difference between each couple of voltage supplies must be less than 100 mV, ⏐VDD_HV_IOy–
VDD_HV_IOx⏐< 100 mV. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-
chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high
voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast
emitter. The low voltage supplies (VDD_LV_xxx) are not all independent.
– VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low
voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted.
– VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx.
Table 11. Recommended operating conditions (3.3 V) (continued)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Doc ID 16100 Rev 7 51/103
The SPC560P34/SPC560P40 supply architecture allows the ADC supply to be managed
independently from the standard V DD_HV supply. Figure 9 shows the constraints of the ADC
power supply.
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
52/103 Doc ID 16100 Rev 7
3.5 Thermal characteristics
3.5.1 Package thermal characteristics


3.5.2 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, TJ , can be obtained from Equation1:
Equation 1: TJ = TA + (R
θJA * PD)
where:A = ambient temperature for the package (°C)θJA = junction-to-ambient thermal resistance (°C/W)D = power dissipation in the package (W)
The junction-to-ambient thermal resistance is an industry standard value that provides a
quick and easy estimation of thermal performance. Unfortunately, there are two values in
common usage: the value determined on a single layer board and the value obtained on a
board with two planes. For packages such as the PBGA, these values can be different by a
factor of two. Which value is closer to the application depends on the power dissipated by
other components on the board. The value obtained on a single layer board is appropriate
for the tightly packed printed circuit board. The value obtained on the board with the internal
planes is usually appropriate if the board has low power dissipation and the components are
well separated.
When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a
junction-to-case thermal resistance and a case-to-ambient thermal resistance:
Table 12. LQFP thermal characteristics
Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification
for this package. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package. When Greek letters are not available, the symbols are typed as RthJB or Theta-JB. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JC.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED