P87C54X2BN ,80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz–INTEGRATED CIRCUITSP80C31X2/32X2P80C51X2/52X2/54X2/58X2P87C51X2/52X2/54X2/58X280C51 8-bit microcon ..
P87C54X2BN ,80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHzapplications requiring more ROM and RAM, as well as moreoscillator and clock circuits.on-chip perip ..
P87C54X2FA ,80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)applications requiring more ROM and RAM, as well as moreoscillator and clock circuits.on-chip perip ..
P87C550EBAA ,80C51 8-bit microcontroller family 4K/128 OTP/ROM/ROMless, 8 channel 8 bit A/D, watchdog timer
P87C550EBAA ,80C51 8-bit microcontroller family 4K/128 OTP/ROM/ROMless, 8 channel 8 bit A/D, watchdog timer
P87C550EBPN ,80C51 8-bit microcontroller family 4K/128 OTP/ROM/ROMless, 8 channel 8 bit A/D, watchdog timer
PCA9540BDP ,2-channel I2C multiplexerPin configuration• Packages Offered: SO8, TSSOP8PIN DESCRIPTIONDESCRIPTIONPINThe PCA9540B is a 1-o ..
PCA9541BS/01 ,PCA9541; 2-to-1 I²C master selector with interrupt logic and reset
PCA9541D/03 ,PCA9541; 2-to-1 I²C master selector with interrupt logic and reset
PCA9541PW ,2-to-1 I2C-bus master selector with interrupt logic and resetapplications where system operation is required, even when one master fails orthe controller card i ..
PCA9542APW ,2-channel I2C-bus multiplexer and interrupt logicGeneral description2The PCA9542A is a 1-of-2 bidirectional translating multiplexer, controlled via ..
PCA9542PW ,2-channel I2C multiplexer and interrupt controller
P80C32X2BA-P80C32X2FN-P87C51X2BA-P87C51X2BBD-P87C52X2BBD-P87C52X2-BBD-P87C52X2FA-P87C52X2FBD-P87C52X2FN-P87C54X2BBD-P87C54X2BN-P87C58X2BBD-P87C58X2BN
80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)
Product data
Supersedes data of 2002 Sep 12
2003 Jan 24
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
DESCRIPTIONThe Philips microcontrollers described in this data sheet are
high-performance static 80C51 designs incorporating Philips’
high-density CMOS technology with operation from 2.7 V to 5.5 V.
They support both 6-clock and 12-clock operation.
The P8xC31X2/51X2 and P8xC32X2/52X2/54X2/58X2 contain
128 byte RAM and 256 byte RAM respectively, 32 I/O lines, three
16-bit counter/timers, a six-source, four-priority level nested interrupt
structure, a serial I/O port for either multi-processor
communications, I/O expansion or full duplex UART, and on-chip
oscillator and clock circuits.
In addition, the devices are low power static designs which offer a
wide range of operating frequencies down to zero. Two software
selectable modes of power reduction — idle mode and power-down
mode — are available. The idle mode freezes the CPU while
allowing the RAM, timers, serial port, and interrupt system to
continue functioning. The power-down mode saves the RAM
contents but freezes the oscillator, causing all other chip functions to
be inoperative. Since the design is static, the clock can be stopped
without loss of user data. Then the execution can be resumed from
the point the clock was stopped.
SELECTION TABLEFor applications requiring more ROM and RAM, as well as more
on-chip peripherals, see the P89C66x and P89C51Rx2 data sheets.
NOTE: I2C = Inter-Integrated Circuit Bus; CAN = Controller Area Network; SPI = Serial Peripheral Interface; PCA = Programmable Counter Array;
ADC = Analog-to-Digital Converter; PWM = Pulse Width Modulation
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
FEATURES 80C51 Central Processing Unit
4 kbytes ROM/EPROM (P80/P87C51X2)
8 kbytes ROM/EPROM (P80/P87C52X2)
16 kbytes ROM/EPROM (P80/P87C54X2)
32 kbytes ROM/EPROM (P80/P87C58X2)
128 byte RAM (P80/P87C51X2 and P80C31X2)
256 byte RAM (P80/P87C52/54X2/58X2 and P80C32X2)
Boolean processor
Fully static operation
Low voltage (2.7 V to 5.5 V at 16 MHz) operation 12-clock operation with selectable 6-clock operation (via software
or via parallel programmer) Memory addressing capability
Up to 64 kbytes ROM and 64 kbytes RAM Power control modes:
Clock can be stopped and resumed
Idle mode
Power-down mode CMOS and TTL compatible Two speed ranges at VCC = 5 V
0 to 30 MHz with 6-clock operation
0 to 33 MHz with 12-clock operation PLCC, DIP, TSSOP or LQFP packages Extended temperature ranges Dual Data Pointers Security bits:
ROM (2 bits)
OTP (3 bits) Encryption array - 64 bytes Four interrupt priority levels Six interrupt sources Four 8-bit I/O ports Full-duplex enhanced UART
Framing error detection
Automatic address recognition Three 16-bit timers/counters T0, T1 (standard 80C51) and
additional T2 (capture and compare) Programmable clock-out pin Asynchronous port reset Low EMI (inhibit ALE, slew rate controlled outputs, and 6-clock
mode) Wake-up from Power Down by an external interrupt.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
P80C31/32X2 ORDERING INFORMATION (ROMLESS)ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
P87C51X2 ORDERING INFORMATION (4 KBYTE OTP)
P87C52X2 ORDERING INFORMATION (8 KBYTE OTP)
P87C54X2 ORDERING INFORMATION (16 KBYTE OTP)ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
P87C58X2 ORDERING INFORMATION (32 KBYTE OTP)ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
All OTP parts listed here are also available as ROM parts (80C5xX2). Please contact your Philips representative if you would like to order a
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
PART NUMBER DERIVATIONThe following table illustrates the correlation between operating mode, power supply and maximum external clock frequency:
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
BLOCK DIAGRAM 1
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
BLOCK DIAGRAM 2 (CPU-ORIENTED)
NOTE: P3.2 and P3.5 absent in the TSSOP38 package.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
LOGIC SYMBOL
NOTE: INT0/P3.2 and T1/P3.5 are absent in the TSSOP38 package.
PLASTIC DUAL IN-LINE PACKAGE
PIN CONFIGURATIONS
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS
LOW PROFILE QUAD FLAT PACK
PIN FUNCTIONS
PLASTIC THIN SHRINK SMALL OUTLINE PACK
PIN FUNCTIONS
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
PIN DESCRIPTIONS
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
NOTES:To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher than VCC + 0.5 V or VSS – 0.5 V, respectively. Absent in the TSSOP38 package.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Table 1. Special Function Registers
NOTE:Unused register bits that are not defined should not be set by the user’s program. If violated, the device could function incorrectly. SFRs are bit addressable. SFRs are modified from or added to the 80C51 SFRs. Reserved bits.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
OSCILLATOR CHARACTERISTICS
Using the oscillatorXTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier. The pins can be configured for use as an on-chip
oscillator, as shown in the logic symbol.
To drive the device from an external clock source, XTAL1 should be
driven while XTAL2 is left unconnected. However, minimum and
maximum high and low times specified in the data sheet must be
observed.
Clock Control Register (CKCON)This device provides control of the 6-clock/12-clock mode by both
an SFR bit (bit X2 in register CKCON and an OTP bit (bit OX2).
When X2 is 0, 12-clock mode is activated. By setting this bit to 1, the
system is switching to 6-clock mode. Having this option
implemented as SFR bit, it can be accessed anytime and changed
to either value. Changing X2 from 0 to 1 will result in executing user
code at twice the speed, since all system time intervals will be
divided by 2. Changing back from 6-clock to 12-clock mode will slow
down running code by a factor of 2.
The OTP clock control bit (OX2) activates the 6-clock mode when
programmed using a parallel programmer, superceding the X2 bit
(CKCON.0). Please also see Table 2 below.
Table 2.
Programmable Clock-OutA 50% duty cycle clock can be programmed to be output on P1.0.
This pin, besides being a regular I/O pin, has two alternate
functions. It can be programmed: to input the external clock for Timer/Counter 2, or to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at
a 16 MHz operating frequency in 12-clock mode (122 Hz to
8 MHz in 6-clock mode).
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit
TR2 (T2CON.2) also must be set to start the timer.
The Clock-Out frequency depends on the oscillator frequency and
the reload value of Timer 2 capture registers (RCAP2H, RCAP2L)
as shown in this equation:
Oscillator Frequency (65536–RCAP2H, RCAP2L)
Where:
n = 2 in 6-clock mode, 4 in 12-clock mode.
(RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L
taken as a 16-bit unsigned integer.
generator simultaneously. Note, however, that the baud-rate and the
Clock-Out frequency will be the same.
RESETA reset is accomplished by holding the RST pin HIGH for at least
two machine cycles (24 oscillator periods in 12-clock and 12
oscillator periods in 6-clock mode), while the oscillator is running. To
insure a reliable power-up reset, the RST pin must be high long
enough to allow the oscillator time to start up (normally a few
milliseconds) plus two machine cycles. After the reset, the part runs
in 12-clock mode, unless it has been set to 6-clock operation using a
parallel programmer.
LOW POWER MODES
Stop Clock ModeThe static design enables the clock speed to be reduced down to
0 MHz (stopped). When the oscillator is stopped, the RAM and
Special Function Registers retain their values. This mode allows
step-by-step utilization and permits reduced system power
consumption by lowering the clock frequency down to any value. For
lowest power consumption the Power Down mode is suggested.
Idle ModeIn idle mode (see Table 3), the CPU puts itself to sleep while all of
the on-chip peripherals stay active. The instruction to invoke the idle
mode is the last instruction executed in the normal operating mode
before the idle mode is activated. The CPU contents, the on-chip
RAM, and all of the special function registers remain intact during
this mode. The idle mode can be terminated either by any enabled
interrupt (at which time the process is picked up at the interrupt
service routine and continued), or by a hardware reset which starts
the processor in the same manner as a power-on reset.
Power-Down ModeTo save even more power, a Power Down mode (see Table 3) can
be invoked by software. In this mode, the oscillator is stopped and
the instruction that invoked Power Down is the last instruction
executed. The on-chip RAM and Special Function Registers retain
their values down to 2.0 V and care must be taken to return VCC to
the minimum specified operating voltages before the Power Down
Mode is terminated.
Either a hardware reset or external interrupt can be used to exit from
Power Down. Reset redefines all the SFRs but does not change the
on-chip RAM. An external interrupt allows both the SFRs and the
on-chip RAM to retain their values. WUPD (AUXR1.3–Wakeup from
Power Down) enables or disables the wakeup from power down with
external interrupt. Where:
WUPD = 0: Disable
WUPD = 1: Enable
To properly terminate Power Down, the reset or external interrupt
should not be executed before VCC is restored to its normal
operating level and must be held active long enough for the
oscillator to restart and stabilize (normally less than 10 ms).
To terminate Power Down with an external interrupt, INT0 or INT1
must be enabled and configured as level-sensitive. Holding the pin
low restarts the oscillator but bringing the pin back high completes
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Low-Power EPROM operation (LPEP)The EPROM array contains some analog circuits that are not
required when VCC is less than 4 V, but are required for a VCC
greater than 4 V. The LPEP bit (AUXR.4), when set, will powerdown
these analog circuits resulting in a reduced supply current. This bit
should be set ONLY for applications that operate at a VCC less than
4 V.
Design ConsiderationWhen the idle mode is terminated by a hardware reset, the device
normally resumes program execution from where it left off, up to two
machine cycles before the internal reset algorithm takes control.
On-chip hardware inhibits access to internal RAM in this event, but
access to the port pins is not inhibited. To eliminate the possibility of
an unexpected write when Idle is terminated by reset, the instruction
following the one that invokes Idle should not be one that writes to a
port pin or to external memory.
ONCE ModeThe ONCE (“On-Circuit Emulation”) Mode facilitates testing and
debugging of systems without the device having to be removed from
the circuit. The ONCE Mode is invoked in the following way: Pull ALE low while the device is in reset and PSEN is high; Hold ALE low as RST is deactivated.
While the device is in ONCE Mode, the Port 0 pins go into a float
state, and the other port pins and ALE and PSEN are weakly pulled
high. The oscillator circuit remains active. While the device is in this
mode, an emulator or test CPU can be used to drive the circuit.
Normal operation is restored when a normal reset is applied.
Table 3. External Pin Status During Idle and Power-Down Modes
TIMER 0 AND TIMER 1 OPERATION
Timer 0 and Timer 1The “Timer” or “Counter” function is selected by control bits C/T in
the Special Function Register TMOD. These two Timer/Counters
have four operating modes, which are selected by bit-pairs (M1, M0)
in TMOD. Modes 0, 1, and 2 are the same for both Timers/Counters.
Mode 3 is different. The four operating modes are described in the
following text.
Mode 0Putting either Timer into Mode 0 makes it look like an 8048 Timer,
which is an 8-bit Counter with a divide-by-32 prescaler. Figure 2
shows the Mode 0 operation.
In this mode, the Timer register is configured as a 13-bit register. As
the count rolls over from all 1s to all 0s, it sets the Timer interrupt
flag TFn. The counted input is enabled to the Timer when TRn = 1
and either GATE = 0 or INTn = 1. (Setting GATE = 1 allows the
Timer to be controlled by external input INTn, to facilitate pulse width
measurements). TRn is a control bit in the Special Function Register
TCON (Figure 3).
The 13-bit register consists of all 8 bits of THn and the lower 5 bits
of TLn. The upper 3 bits of TLn are indeterminate and should be
ignored. Setting the run flag (TRn) does not clear the registers.
Mode 0 operation is the same for Timer 0 as for Timer 1. There are
two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer
0 (TMOD.3).
Mode 1Mode 1 is the same as Mode 0, except that the Timer register is
being run with all 16 bits.
Mode 2Mode 2 configures the Timer register as an 8-bit Counter (TLn) with
automatic reload, as shown in Figure 4. Overflow from TLn not only
sets TFn, but also reloads TLn with the contents of THn, which is
preset by software. The reload leaves THn unchanged.
Mode 2 operation is the same for Timer 0 as for Timer 1.
Mode 3Timer 1 in Mode 3 simply holds its count. The effect is the same as
setting TR1 = 0.
Timer 0 in Mode 3 establishes TL0 and TH0 as two separate
counters. The logic for Mode 3 on Timer 0 is shown in Figure 5. TL0
uses the Timer 0 control bits: C/T, GATE, TR0, and TF0 as well as
pin INT0. TH0 is locked into a timer function (counting machine
cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus,
TH0 now controls the “Timer 1” interrupt.
Mode 3 is provided for applications requiring an extra 8-bit timer on
the counter. With Timer 0 in Mode 3, an 80C51 can look like it has
three Timer/Counters. When Timer 0 is in Mode 3, Timer 1 can be
turned on and off by switching it out of and into its own Mode 3, or
can still be used by the serial port as a baud rate generator, or in
fact, in any application not requiring an interrupt.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 1. Timer/Counter 0/1 Mode Control (TMOD) Register
Figure 2. Timer/Counter 0/1 Mode 0: 13-Bit Timer/Counter
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 3. Timer/Counter 0/1 Control (TCON) Register
Figure 4. Timer/Counter 0/1 Mode 2: 8-Bit Auto-Reload
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 5. Timer/Counter 0 Mode 3: Two 8-Bit Counters
TIMER 2 OPERATION
Timer 2Timer 2 is a 16-bit Timer/Counter which can operate as either an
event timer or an event counter, as selected by C/T2 in the special
function register T2CON (see Figure 6). Timer 2 has three operating
modes: Capture, Auto-reload (up or down counting), and Baud Rate
Generator, which are selected by bits in the T2CON as shown in
Table 4.
Capture ModeIn the capture mode there are two options which are selected by bit
EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or
counter (as selected by C/T2 in T2CON) which, upon overflowing,
sets bit TF2, the timer 2 overflow bit. This bit can be used to
generate an interrupt (by enabling the Timer 2 interrupt bit in the
IE register). If EXEN2=1, Timer 2 operates as described above, but
with the added feature that a 1-to-0 transition at external input T2EX
causes the current value in the Timer 2 registers, TL2 and TH2, to
be captured into registers RCAP2L and RCAP2H, respectively. In
addition, the transition at T2EX causes bit EXF2 in T2CON to be
set, and EXF2 (like TF2) can generate an interrupt (which vectors to
the same location as Timer 2 overflow interrupt. The Timer 2
interrupt service routine can interrogate TF2 and EXF2 to determine
which event caused the interrupt). The capture mode is illustrated in
Figure 7 (There is no reload value for TL2 and TH2 in this mode.
Even when a capture event occurs from T2EX, the counter keeps on
counting T2EX pin transitions or osc/12 (12-clock Mode) or osc/6
(6-clock Mode) pulses).
Auto-Reload Mode (Up or Down Counter)Counter Enable) which is located in the T2MOD register (see
Figure 8). After reset, DCEN=0 which means Timer 2 will default to
counting up. If DCEN is set, Timer 2 can count up or down
depending on the value of the T2EX pin.
Figure 9 shows Timer 2 which will count up automatically since
DCEN=0. In this mode there are two options selected by bit EXEN2
in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFFH
and sets the TF2 (Overflow Flag) bit upon overflow. This causes the
Timer 2 registers to be reloaded with the 16-bit value in RCAP2L
and RCAP2H. The values in RCAP2L and RCAP2H are preset by
software.
If EXEN2=1, then a 16-bit reload can be triggered either by an
overflow or by a 1-to-0 transition at input T2EX. This transition also
sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be
generated when either TF2 or EXF2 are 1.
In Figure 10 DCEN=1 which enables Timer 2 to count up or down.
This mode allows pin T2EX to control the direction of count. When a
logic 1 is applied at pin T2EX, Timer 2 will count up. Timer 2 will
overflow at 0FFFFH and set the TF2 flag, which can then generate
an interrupt, if the interrupt is enabled. This timer overflow also
causes the 16-bit value in RCAP2L and RCAP2H to be reloaded
into the timer registers TL2 and TH2.
A logic 0 applied to pin T2EX causes Timer 2 to count down. The
timer will underflow when TL2 and TH2 become equal to the value
stored in RCAP2L and RCAP2H. A Timer 2 underflow sets the TF2
flag and causes 0FFFFH to be reloaded into the timer registers TL2
and TH2.
The external flag EXF2 toggles when Timer 2 underflows or
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Table 4. Timer 2 Operating Modes
Figure 6. Timer/Counter 2 (T2CON) Control Register
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 7. Timer 2 in Capture Mode
Figure 8. Timer 2 Mode (T2MOD) Control Register
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 9. Timer 2 in Auto-Reload Mode (DCEN = 0)
Figure 10. Timer 2 Auto Reload Mode (DCEN = 1)
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 11. Timer 2 in Baud Rate Generator Mode
Baud Rate Generator ModeBits TCLK and/or RCLK in T2CON (Table 4) allow the serial port
transmit and receive baud rates to be derived from either Timer 1 or
Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit
baud rate generator. When TCLK= 1, Timer 2 is used as the serial
port transmit baud rate generator. RCLK has the same effect for the
serial port receive baud rate. With these two bits, the serial port can
have different receive and transmit baud rates – one generated by
Timer 1, the other by Timer 2.
Figure 11 shows the Timer 2 in baud rate generation mode. The
baud rate generation mode is like the auto-reload mode, in that a
rollover in TH2 causes the Timer 2 registers to be reloaded with the
16-bit value in registers RCAP2H and RCAP2L, which are preset by
software.
The baud rates in modes 1 and 3 are determined by Timer 2’s
overflow rate given below:
Modes1 and3 Baud Rates� Timer2 Overflow Rate
The timer can be configured for either “timer” or “counter” operation.
In many applications, it is configured for “timer” operation (C/T2=0).
Timer operation is different for Timer 2 when it is being used as a
baud rate generator.
Usually, as a timer it would increment every machine cycle (i.e., 1/6
the oscillator frequency in 6-clock mode or 1/12 the oscillator
frequency in 12-clock mode). As a baud rate generator, it
Oscillator Frequency� [65536 �(RCAP2H,RCAP2L)]]
Modes 1 and 3 Baud Rates =
Where:
n = 16 in 6-clock mode, 32 in 12-clock mode.
(RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L
taken as a 16-bit unsigned integer.
The Timer 2 as a baud rate generator mode shown in Figure 11 is
valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a
rollover in TH2 does not set TF2, and will not generate an interrupt.
Thus, the Timer 2 interrupt does not have to be disabled when
Timer 2 is in the baud rate generator mode. Also if the EXEN2
(T2 external enable flag) is set, a 1-to-0 transition in T2EX
(Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but
will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2).
Therefore when Timer 2 is in use as a baud rate generator, T2EX
can be used as an additional external interrupt, if needed.
When Timer 2 is in the baud rate generator mode, one should not try
to read or write TH2 and TL2. As a baud rate generator, Timer 2 is
incremented every state time (osc/2) or asynchronously from pin T2;
under these conditions, a read or write of TH2 or TL2 may not be
accurate. The RCAP2 registers may be read, but should not be
written to, because a write might overlap a reload and cause write
and/or reload errors. The timer should be turned off (clear TR2)
before accessing the Timer 2 or RCAP2 registers.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Table 5. Timer 2 Generated Commonly Used
Baud Rates
Summary Of Baud Rate EquationsTimer 2 is in baud rate generating mode. If Timer 2 is being clocked
through pin T2(P1.0) the baud rate is:
Baud Rate� Timer2 Overflow Rate
If Timer 2 is being clocked internally, the baud rate is:
Baud Rate� fOSC
[n� [65536� (RCAP2H, RCAP2L)]]
Where:
n = 16 in 6-clock mode, 32 in 12-clock mode.
fOSC= Oscillator Frequency
To obtain the reload value for RCAP2H and RCAP2L, the above
equation can be rewritten as:
RCAP2H, RCAP2L� 65536�� fOSC� Baud Rate�
Timer/Counter 2 Set-upExcept for the baud rate generator mode, the values given for
T2CON do not include the setting of the TR2 bit. Therefore, bit TR2
must be set, separately, to turn the timer on. See Table 6 for set-up
of Timer 2 as a timer. Also see Table 7 for set-up of Timer 2 as a
counter.
Table 6. Timer 2 as a Timer
Table 7. Timer 2 as a Counter
NOTES: Capture/reload occurs only on timer/counter overflow. Capture/reload occurs on timer/counter overflow and a 1-to-0
transition on T2EX (P1.1) pin except when Timer 2 is used in the
baud rate generator mode.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
FULL-DUPLEX ENHANCED UART
Standard UART operationThe serial port is full duplex, meaning it can transmit and receive
simultaneously. It is also receive-buffered, meaning it can
commence reception of a second byte before a previously received
byte has been read from the register. (However, if the first byte still
hasn’t been read by the time reception of the second byte is
complete, one of the bytes will be lost.) The serial port receive and
transmit registers are both accessed at Special Function Register
SBUF. Writing to SBUF loads the transmit register, and reading
SBUF accesses a physically separate receive register.
The serial port can operate in 4 modes:
Mode 0: Serial data enters and exits through RxD. TxD outputs
the shift clock. 8 bits are transmitted/received (LSB first).
The baud rate is fixed at 1/12 the oscillator frequency in
12-clock mode or 1/6 the oscillator frequency in 6-clock
mode.
Mode 1: 10 bits are transmitted (through TxD) or received
(through RxD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
Special Function Register SCON. The baud rate is
variable.
Mode 2: 11 bits are transmitted (through TxD) or received
(through RxD): start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On
Transmit, the 9th data bit (TB8 in SCON) can be
assigned the value of 0 or 1. Or, for example, the parity
bit (P, in the PSW) could be moved into TB8. On receive,
the 9th data bit goes into RB8 in Special Function
Register SCON, while the stop bit is ignored. The baud
rate is programmable to either 1/32 or 1/64 the oscillator
frequency in 12-clock mode or 1/16 or 1/32 the oscillator
frequency in 6-clock mode.
Mode 3: 11 bits are transmitted (through TxD) or received
(through RxD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). In fact,
Mode 3 is the same as Mode 2 in all respects except
baud rate. The baud rate in Mode 3 is variable.
In all four modes, transmission is initiated by any instruction that
uses SBUF as a destination register. Reception is initiated in Mode 0
by the condition RI = 0 and REN = 1. Reception is initiated in the
other modes by the incoming start bit if REN = 1.
Multiprocessor CommunicationsModes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received. The 9th
one goes into RB8. Then comes a stop bit. The port can be
programmed such that when the stop bit is received, the serial port
interrupt will be activated only if RB8 = 1. This feature is enabled by
setting bit SM2 in SCON. A way to use this feature in multiprocessor
systems is as follows:
When the master processor wants to transmit a block of data to one
of several slaves, it first sends out an address byte which identifies
the target slave. An address byte differs from a data byte in that the
9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no
The slaves that weren’t being addressed leave their SM2s set and
go on about their business, ignoring the coming data bytes.
SM2 has no effect in Mode 0, and in Mode 1 can be used to check
the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the
receive interrupt will not be activated unless a valid stop bit is
received.
Serial Port Control RegisterThe serial port control and status register is the Special Function
Register SCON, shown in Figure 12. This register contains not only
the mode selection bits, but also the 9th data bit for transmit and
receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).
Baud RatesThe baud rate in Mode 0 is fixed: Mode 0 Baud Rate = Oscillator
Frequency / 12 (12-clock mode) or / 6 (6-clock mode). The baud
rate in Mode 2 depends on the value of bit SMOD in Special
Function Register PCON. If SMOD = 0 (which is the value on reset),
and the port pins in 12-clock mode, the baud rate is 1/64 the
oscillator frequency. If SMOD = 1, the baud rate is 1/32 the oscillator
frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the
oscillator frequency, respectively.
Mode 2 Baud Rate =
2SMODn � (Oscillator Frequency)
Where:
n = 64 in 12-clock mode, 32 in 6-clock mode
The baud rates in Modes 1 and 3 are determined by the Timer 1 or
Timer 2 overflow rate.
Using Timer 1 to Generate Baud RatesWhen Timer 1 is used as the baud rate generator (T2CON.RCLK
= 0, T2CON.TCLK = 0), the baud rates in Modes 1 and 3 are
determined by the Timer 1 overflow rate and the value of SMOD as
follows:
Mode 1, 3 Baud Rate =
2SMOD � (Timer1 Overflow Rate)
Where:
n = 32 in 12-clock mode, 16 in 6-clock mode
The Timer 1 interrupt should be disabled in this application. The
Timer itself can be configured for either “timer” or “counter”
operation, and in any of its 3 running modes. In the most typical
applications, it is configured for “timer” operation, in the auto-reload
mode (high nibble of TMOD = 0010B). In that case the baud rate is
given by the formula:
Mode 1, 3 Baud Rate =
2SMODn � Oscillator Frequency� [256–(TH1)]
Where:
n = 32 in 12-clock mode, 16 in 6-clock mode
One can achieve very low baud rates with Timer 1 by leaving the
Timer 1 interrupt enabled, and configuring the Timer to run as a
16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 12. Serial Port Control (SCON) Register
Figure 13. Timer 1 Generated Commonly Used Baud Rates
More About Mode 0Serial data enters and exits through RxD. TxD outputs the shift
clock. 8 bits are transmitted/received: 8 data bits (LSB first). The
baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or
1/6 the oscillator frequency (6-clock mode).
Figure 14 shows a simplified functional diagram of the serial port in
Mode 0, and associated timing.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The “write to SBUF” signal at S6P2 also loads a
1 into the 9th position of the transmit shift register and tells the TX
Control block to commence a transmission. The internal timing is
such that one full machine cycle will elapse between “write to SBUF”
and activation of SEND.
S6P2 of every machine cycle in which SEND is active, the contents
of the transmit shift are shifted to the right one position.
As data bits shift out to the right, zeros come in from the left. When
the MSB of the data byte is at the output position of the shift register,
then the 1 that was initially loaded into the 9th position, is just to the
left of the MSB, and all positions to the left of that contain zeros.
This condition flags the TX Control block to do one last shift and
then deactivate SEND and set T1. Both of these actions occur at
S1P1 of the 10th machine cycle after “write to SBUF.”
Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2
of the next machine cycle, the RX Control unit writes the bits
11111110 to the receive shift register, and in the next clock phase
activates RECEIVE.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
shifted to the left one position. The value that comes in from the right
is the value that was sampled at the P3.0 pin at S5P2 of the same
machine cycle.
As data bits come in from the right, 1s shift out to the left. When the
0 that was initially loaded into the rightmost position arrives at the
leftmost position in the shift register, it flags the RX Control block to
do one last shift and load SBUF. At S1P1 of the 10th machine cycle
after the write to SCON that cleared RI, RECEIVE is cleared as RI is
set.
More About Mode 1Ten bits are transmitted (through TxD), or received (through RxD): a
start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the
stop bit goes into RB8 in SCON. In the 80C51 the baud rate is
determined by the Timer 1 or Timer 2 overflow rate.
Figure 15 shows a simplified functional diagram of the serial port in
Mode 1, and associated timings for transmit receive.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The “write to SBUF” signal also loads a 1 into
the 9th bit position of the transmit shift register and flags the TX
Control unit that a transmission is requested. Transmission actually
commences at S1P1 of the machine cycle following the next rollover
in the divide-by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the “write to SBUF” signal.)
The transmission begins with activation of SEND which puts the
start bit at TxD. One bit time later, DATA is activated, which enables
the output bit of the transmit shift register to TxD. The first shift pulse
occurs one bit time after that.
As data bits shift out to the right, zeros are clocked in from the left.
When the MSB of the data byte is at the output position of the shift
register, then the 1 that was initially loaded into the 9th position is
just to the left of the MSB, and all positions to the left of that contain
zeros. This condition flags the TX Control unit to do one last shift
and then deactivate SEND and set TI. This occurs at the 10th
divide-by-16 rollover after “write to SBUF.”
Reception is initiated by a detected 1-to-0 transition at RxD. For this
purpose RxD is sampled at a rate of 16 times whatever baud rate
has been established. When a transition is detected, the
divide-by-16 counter is immediately reset, and 1FFH is written into
the input shift register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.
The 16 states of the counter divide each bit time into 16ths. At the
7th, 8th, and 9th counter states of each bit time, the bit detector
samples the value of RxD. The value accepted is the value that was
seen in at least 2 of the 3 samples. This is done for noise rejection.
If the value accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for another 1-to-0
transition. This is to provide rejection of false start bits. If the start bit
proves valid, it is shifted into the input shift register, and reception of
the rest of the frame will proceed.
As data bits come in from the right, 1s shift out to the left. When the
start bit arrives at the leftmost position in the shift register (which in
mode 1 is a 9-bit register), it flags the RX Control block to do one
last shift, load SBUF and RB8, and set RI. The signal to load SBUF
and RB8, and to set RI, will be generated if, and only if, the following
conditions are met at the time the final shift pulse is generated.: R1 = 0, and Either SM2 = 0, or the received stop bit = 1.
whether the above conditions are met or not, the unit goes back to
looking for a 1-to-0 transition in RxD.
More About Modes 2 and 3Eleven bits are transmitted (through TxD), or received (through
RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data
bit, and a stop bit (1). On transmit, the 9th data bit (TB8) can be
assigned the value of 0 or 1. On receive, the 9the data bit goes into
RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64
(12-clock mode) or 1/16 or 1/32 the oscillator frequency (6-clock
mode) the oscillator frequency in Mode 2. Mode 3 may have a
variable baud rate generated from Timer 1 or Timer 2.
Figures 16 and 17 show a functional diagram of the serial port in
Modes 2 and 3. The receive portion is exactly the same as in Mode
1. The transmit portion differs from Mode 1 only in the 9th bit of the
transmit shift register.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The “write to SBUF” signal also loads TB8 into
the 9th bit position of the transmit shift register and flags the TX
Control unit that a transmission is requested. Transmission
commences at S1P1 of the machine cycle following the next rollover
in the divide-by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the “write to SBUF” signal.)
The transmission begins with activation of SEND, which puts the
start bit at TxD. One bit time later, DATA is activated, which enables
the output bit of the transmit shift register to TxD. The first shift pulse
occurs one bit time after that. The first shift clocks a 1 (the stop bit)
into the 9th bit position of the shift register. Thereafter, only zeros
are clocked in. Thus, as data bits shift out to the right, zeros are
clocked in from the left. When TB8 is at the output position of the
shift register, then the stop bit is just to the left of TB8, and all
positions to the left of that contain zeros. This condition flags the TX
Control unit to do one last shift and then deactivate SEND and set
TI. This occurs at the 11th divide-by-16 rollover after “write to SUBF.”
Reception is initiated by a detected 1-to-0 transition at RxD. For this
purpose RxD is sampled at a rate of 16 times whatever baud rate
has been established. When a transition is detected, the
divide-by-16 counter is immediately reset, and 1FFH is written to the
input shift register.
At the 7th, 8th, and 9th counter states of each bit time, the bit
detector samples the value of R-D. The value accepted is the value
that was seen in at least 2 of the 3 samples. If the value accepted
during the first bit time is not 0, the receive circuits are reset and the
unit goes back to looking for another 1-to-0 transition. If the start bit
proves valid, it is shifted into the input shift register, and reception of
the rest of the frame will proceed.
As data bits come in from the right, 1s shift out to the left. When the
start bit arrives at the leftmost position in the shift register (which in
Modes 2 and 3 is a 9-bit register), it flags the RX Control block to do
one last shift, load SBUF and RB8, and set RI.
The signal to load SBUF and RB8, and to set RI, will be generated
if, and only if, the following conditions are met at the time the final
shift pulse is generated. RI = 0, and Either SM2 = 0, or the received 9th data bit = 1.
If either of these conditions is not met, the received frame is
irretrievably lost, and RI is not set. If both conditions are met, the
received 9th data bit goes into RB8, and the first 8 data bits go into
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Enhanced UART operationIn addition to the standard operation modes, the UART can perform
framing error detect by looking for missing stop bits, and automatic
address recognition. The UART also fully supports multiprocessor
communication.
When used for framing error detect the UART looks for missing stop
bits in the communication. A missing bit will set the FE bit in the
SCON register. The FE bit shares the SCON.7 bit with SM0 and the
function of SCON.7 is determined by PCON.6 (SMOD0) (see
Figure 18). If SMOD0 is set then SCON.7 functions as FE. SCON.7
functions as SM0 when SMOD0 is cleared. When used as FE
SCON.7 can only be cleared by software. Refer to Figure 19.
Automatic Address RecognitionAutomatic Address Recognition is a feature which allows the UART
to recognize certain addresses in the serial bit stream by using
hardware to make the comparisons. This feature saves a great deal
of software overhead by eliminating the need for the software to
examine every serial address which passes by the serial port. This
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be
automatically set when the received byte contains either the “Given”
address or the “Broadcast” address. The 9 bit mode requires that
the 9th information bit is a 1 to indicate that the received information
is an address and not data. Automatic address recognition is shown
in Figure 20.
The 8 bit mode is called Mode 1. In this mode the RI flag will be set
if SM2 is enabled and the information received has a valid stop bit
following the 8 address bits and the information is either a Given or
Broadcast address.
Mode 0 is the Shift Register mode and SM2 is ignored.
Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the
Given slave address or addresses. All of the slaves may be
contacted by using the Broadcast address. Two special Function
Registers are used to define the slave’s address, SADDR, and the
address mask, SADEN. SADEN is used to define which bits in the
SADDR are to be used and which bits are “don’t care”. The SADEN
mask can be logically ANDed with the SADDR to create the “Given”
address which the master will use for addressing each of the slaves.
Use of the Given address allows multiple slaves to be recognized
while excluding others. The following examples will help to show the
versatility of this scheme:
Slave 0 SADDR = 1100 0000
SADEN =
Given = 1100 00X0
Slave 1 SADDR = 1100 0000
SADEN =
Given = 1100 000X
In the above example SADDR is the same and the SADEN data is
used to differentiate between the two slaves. Slave 0 requires a 0 in
bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is
ignored. A unique address for Slave 0 would be 1100 0010 since
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address which has bit 0 = 0 (for
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed
with 1100 0000.
In a more complex system the following could be used to select
slaves 1 and 2 while excluding slave 0:
Slave 0 SADDR = 1100 0000
SADEN = 1111 1001
Given = 1100 0XX0
Slave 1 SADDR = 1110 0000
SADEN = 1111 1010
Given = 1110 0X0X
Slave 2 SADDR = 1110 0000
SADEN =
Given = 1110 00XX
In the above example the differentiation among the 3 slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and
it can be uniquely addressed by 1110 and 0101. Slave 2 requires
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0
and 1 and exclude Slave 2 use address 1110 0100, since it is
necessary to make bit 2 = 1 to exclude slave 2.
The Broadcast Address for each slave is created by taking the
logical OR of SADDR and SADEN. Zeros in this result are trended
as don’t-cares. In most cases, interpreting the don’t-cares as ones,
the broadcast address will be FF hexadecimal.
Upon reset SADDR (SFR address 0A9H) and SADEN (SFR
address 0B9H) are leaded with 0s. This produces a given address
of all “don’t cares” as well as a Broadcast address of all “don’t
cares”. This effectively disables the Automatic Addressing mode and
allows the microcontroller to use standard 80C51 type UART drivers
which do not make use of this feature.
Philips Semiconductors Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
Figure 18. SCON: Serial Port Control Register