IC Phoenix
 
Home ›  NN21 > NTD20N06-NTD20N06G-NTD20N06T4-NTD20N06T4G,Power MOSFET 20 Amps, 60 Volts
NTD20N06-NTD20N06G-NTD20N06T4-NTD20N06T4G Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
NTD20N06ONN/a10000avaiPower MOSFET 20 Amps, 60 Volts
NTD20N06GONN/a25200avaiPower MOSFET 20 Amps, 60 Volts
NTD20N06T4ONN/a30262avaiPower MOSFET 20 Amps, 60 Volts
NTD20N06T4GONN/a10000avaiPower MOSFET 20 Amps, 60 Volts


NTD20N06T4 ,Power MOSFET 20 Amps, 60 VoltsELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)JCharacteristic Symbol Min Typ Max Unit ..
NTD20N06T4G ,Power MOSFET 20 Amps, 60 VoltsMAXIMUM RATINGS (T = 25°C unless otherwise noted)JDIAGRAMSRating Symbol Value Unit4Drain−to−Source ..
NTD20P06L ,Power MOSFET 60 V, 15 A, Single P-Channel DPAKMaximum ratings applied to the device are individual stress limit values (notORDERING INFORMATIONno ..
NTD20P06L ,Power MOSFET 60 V, 15 A, Single P-Channel DPAK2NTD20P06LTYPICAL PERFORMANCE CURVES(T = 25°C unless otherwise noted)J4040V = −6 VV = −10 VGS GST = ..
NTD20P06L-1G ,Power MOSFET 60 V, 15 A, Single P-Channel DPAKMAXIMUM RATINGS (T = 25°C unless otherwise noted)JParameter Symbol Value UnitDrain−to−Source Voltag ..
NTD20P06LG ,Power MOSFET 60 V, 15 A, Single P-Channel DPAK• Low Gate Charge for Fast Switching• Pb−Free Packages are AvailableI MAXDV R TYP (Note 1)Applicati ..
OR2T08A-4BA256 , Field-Programmable Gate Arrays
OR2T10A-2S208 , Field-Programmable Gate Arrays
OR2T15A-6S208 , Field-Programmable Gate Arrays
OR2T15B , Field-Programmable Gate Arrays
OR2T40A-2PS208 , Field-Programmable Gate Arrays
OR2T40A-2PS208 , Field-Programmable Gate Arrays


NTD20N06-NTD20N06G-NTD20N06T4-NTD20N06T4G
Power MOSFET 20 Amps, 60 Volts
3R , DRAIN−TO−SOURCE RESISTANCE R , DRAIN−TO−SOURCE RESISTANCE () I , DRAIN CURRENT (AMPS)DS(on)DS(on) D(NORMALIZED)R , DRAIN−TO−SOURCE RESISTANCE ()DS(on)I , LEAKAGE (nA)DSSI , DRAIN CURRENT (AMPS)DNTD20N06POWER MOSFET SWITCHINGSwitching behavior is most easily modeled and predicted The capacitance (C ) is read from the capacitance curve atissby recognizing that the power MOSFET is charge a voltage corresponding to the off−state condition whencontrolled. The lengths of various switching intervals (t) calculating t and is read at a voltage corresponding to thed(on)are determined by how fast the FET input capacitance can on−state when calculating t .d(off)be charged by current from the generator. At high switching speeds, parasitic circuit elementscomplicate the analysis. The inductance of the MOSFETThe published capacitance data is difficult to use forsource lead, inside the package and in the circuit wiringcalculating rise and fall because drain−gate capacitancewhich is common to both the drain and gate current paths,varies greatly with applied voltage. Accordingly, gateproduces a voltage at the source which reduces the gate drivecharge data is used. In most cases, a satisfactory estimate ofcurrent. The voltage is determined by Ldi/dt, but since di/dtaverage input current (I ) can be made from aG(AV)is a function of drain current, the mathematical solution isrudimentary analysis of the drive circuit so thatcomplex. The MOSFET output capacitance alsot = Q/IG(AV)complicates the mathematics. And finally, MOSFETs havefinite internal gate resistance which effectively adds to theDuring the rise and fall time interval when switching aresistance of the driving source, but the internal resistanceresistive load, V remains virtually constant at a levelGSknown as the plateau voltage, V . Therefore, rise and fall is difficult to measure and, consequently, is not specified.SGPtimes may be approximated by the following: The resistive switching time variation versus gateresistance (Figure 9) shows how typical switchingt = Q x R /(V − V )r 2 G GG GSPperformance is affected by the parasitic circuit elements. Ift = Q x R /Vf 2 G GSPthe parasitics were not present, the slope of the curves wouldmaintain a value of unity regardless of the switching speed.whereThe circuit used to obtain the data is constructed to minimizeV = the gate drive voltage, which varies from zero to VGG GGcommon inductance in the drain and gate circuit loops andR = the gate drive resistanceGis believed readily achievable with board mountedand Q and V are read from the gate charge curve.2 GSP components. Most power electronic loads are inductive; thedata in the figure is taken with a resistive load, whichDuring the turn−on and turn−off delay times, gate current isapproximates an optimally snubbed inductive load. Powernot constant. The simplest calculation uses appropriateMOSFETs may be safely operated into an inductive load;values from the capacitance curves in a standard equation forhowever, snubbing reduces switching losses.voltage change in an RC network. The equations are:t = R C In [V /(V − V )]d(on) G iss GG GG GSPt = R C In (V /V )d(off) G iss GG GSP2000V = 0 V V = 0 VDS GST = 25°CJ1600Ciss1200CrssCiss800400CossCrss01055 0 10 15 20 25V VGS DSGATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)Figure 7. Capacitance Variation
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED