MAX9986ETP+T ,SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/SwitchApplications850MHz W-CDMA Base StationsOrdering InformationGSM 850/GSM 900 2G and 2.5G EDGE BasePKG ..
MAX9987ETP+ ,+14dBm to +20dBm LO Buffers/Splitters with ±1dB VariationMAX9987/MAX998819-2416; Rev 2; 3/04+14dBm to +20dBm LO Buffers/Splitterswith ±1dB Variation
MAX9987ETP+T ,+14dBm to +20dBm LO Buffers/Splitters with ±1dB VariationFeaturesThe MAX9987 and MAX9988 LO buffers/splitters each♦ ±1dB Output Power Variationintegrate a p ..
MAX9987ETP+T ,+14dBm to +20dBm LO Buffers/Splitters with ±1dB VariationELECTRICAL CHARACTERISTICS—MAX9988(Typical Application Circuit, V = 4.75V to 5.25V, input and outpu ..
MAX9988ETP+ ,+14dBm to +20dBm LO Buffers/Splitters with ±1dB VariationBlock DiagramRF INPUTOUTPUT AMP(1)PLL BUFFER(1)MAX9987TO PLL OUTPLLOUT1MAX9988(+3dBm) IF OUTPUT PRE ..
MAX9988ETP+ ,+14dBm to +20dBm LO Buffers/Splitters with ±1dB VariationBlock DiagramRF INPUTOUTPUT AMP(1)PLL BUFFER(1)MAX9987TO PLL OUTPLLOUT1MAX9988(+3dBm) IF OUTPUT PRE ..
MB89713 , CMOS 8-BIT SINGLE-CHIP FLEXIBLE MICROCONTROLLER
MB89855 ,8-bit Proprietary MicrocontrollerFEATURES• Various package optionsQFP package (80 pins): MB89860SDIP package (64 pins): MB89850• Hig ..
MB89855R ,8-bit Proprietary MicrocontrollerFEATURES• Various package optionsSDIP package (64 pins)/QFP package (64 pins)• High-speed processin ..
MB89875 ,8-bit Proprietary MicrocontrollerFEATURES2•F MC-8L family CPU core• Dual-clock control system• Maximum memory space: 64 Kbytes• Mini ..
MB89935A ,8-bit Proprietary MicrocontrollerFUJITSU SEMICONDUCTORDS07-12541-2EDATA SHEET8-bit Proprietary MicrocontrollerCMOS2F MC-8L MB89930A ..
MB89935B ,8-bit Proprietary MicrocontrollerFUJITSU SEMICONDUCTORDS07-12541-2EDATA SHEET8-bit Proprietary MicrocontrollerCMOS2F MC-8L MB89930A ..
MAX9986ETP+-MAX9986ETP+T
SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch
General DescriptionThe MAX9986 high-linearity downconversion mixer pro-
vides 10dB gain, +23.6dBm IIP3, and 9.3dB NF for
815MHz to 995MHz base-station receiver applications.
With a 960MHz to 1180MHz LO frequency range, this
particular mixer is ideal for high-side LO injection
receiver architectures. Low-side LO injection is sup-
ported by the MAX9984, which is pin-for-pin and func-
tionally compatible with the MAX9986.
In addition to offering excellent linearity and noise perfor-
mance, the MAX9986 also yields a high level of compo-
nent integration. This device includes a double-balanced
passive mixer core, an IF amplifier, a dual-input LO selec-
table switch, and an LO buffer. On-chip baluns are also
integrated to allow for single-ended RF and LO inputs.
The MAX9986 requires a nominal LO drive of 0dBm, and
supply current is guaranteed to be below 265mA.
The MAX9984/MAX9986 are pin compatible with the
MAX9994/MAX9996 1700MHz to 2200MHz mixers,
making this entire family of downconverters ideal for
applications where a common PC board layout is used
for both frequency bands. The MAX9986 is also func-
tionally compatible with the MAX9993.
The MAX9986 is available in a compact, 20-pin, thin
QFN package (5mm x 5mm) with an exposed paddle.
Electrical performance is guaranteed over the extended
-40°C to +85°C temperature range.
Applications850MHz W-CDMA Base Stations
GSM 850/GSM 900 2G and 2.5G EDGE Base
Stations
cdmaOne™ and cdma2000®Base Stations
iDEN®Base Stations
Predistortion Receivers
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Microwave Links
Digital and Spread-Spectrum Communication
Systems
Features815MHz to 995MHz RF Frequency Range960MHz to 1180MHz LO Frequency Range
(MAX9986)570MHz to 850MHz LO Frequency Range
(MAX9984)50MHz to 250MHz IF Frequency Range10dB Conversion Gain+23.6dBm Input IP3+12dBm Input 1dB Compression Point9.3dB Noise Figure67dBc 2LO-2RF Spurious Rejection at
PRF= -10dBmIntegrated LO BufferIntegrated RF and LO Baluns for Single-Ended
InputsLow -3dBm to +3dBm LO DriveBuilt-In SPDT LO Switch with 49dB LO1 to LO2
Isolation and 50ns Switching TimePin Compatible with MAX9994/MAX9996 1700MHz
to 2200MHz MixersFunctionally Compatible with MAX9993External Current-Setting Resistors Provide Option
for Operating Mixer in Reduced Power/Reduced
Performance ModeLead-Free Package Available
MAX9986
SiGe High-Linearity, 815MHz to 995MHz
Downconversion Mixer with LO Buffer/Switch
Pin Configuration/Functional Diagram and Typical
Application Circuit appear at end of data sheet.19-3605; Rev 0; 2/05
EVALUATION KIT
AVAILABLE
Ordering Information*EP = Exposed paddle.
+ = Lead free. D = Dry pack. T = Tape-and-reel.
PARTTEMP RANGEPIN-PACKAGEPKG
CODEMAX9986ETP- 40° C to + 85° C 20 Thi n QFN - E P *
5m m × 5m m T2055- 3
MAX9986ETP-T- 40° C to + 85° C 20 Thi n QFN - E P *
5m m × 5m m T2055- 3
MAX9986ETP+D- 40° C to + 85° C 20 Thi n QFN - E P *
5m m × 5m m T2055- 3AX 9986E TP + TD - 40° C to + 85° C 20 Thi n QFN - E P *
5m m × 5m m T2055- 3
cdma2000 is a registered trademark of the Telecommunications
Industry Association.
cdmaOne is a trademark of CDMA Development Group.
iDEN is a registered trademark of Motorola, Inc.
MAX9986
SiGe High-Linearity, 815MHz to 995MHz
Downconversion Mixer with LO Buffer/Switch
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS(MAX9986 Typical Application Circuit, VCC= +4.75V to +5.25V, no RF signal applied, IF+ and IF- outputs pulled up to VCCthrough
inductive chokes, R1= 953Ω, R2= 619Ω, TC= -40°C to +85°C, unless otherwise noted. Typical values are at VCC= +5V, TC=
+25°C, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS, LOSEL, IFBIAS to GND...-0.3V to (VCC+ 0.3V)
TAP........................................................................-0.3V to +1.4V
LO1, LO2, LEXT to GND........................................-0.3V to +0.3V
RF, LO1, LO2 Input Power.............................................+12dBm
RF (RF is DC shorted to GND through a balun) .................50mA
Continuous Power Dissipation(TA= +70°C)
20-Pin Thin QFN-EP (derate 26.3mW/°C above +70°C)...........2.1W
θJA.................................................................................+38°C/W
θJC.................................................................................+13°C/W
Operating Temperature Range (Note A)....TC= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10s).................................+300°C
Note A:TCis the temperature on the exposed paddle of the package.
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITSSupply VoltageVCC4.755.005.25V
Supply CurrentICC222265mA
LO_SEL Input-Logic LowVIL0.8V
LO_SEL Input-Logic HighVIH2V
AC ELECTRICAL CHARACTERISTICS(MAX9986 Typical Application Circuit, VCC= +4.75V to +5.25V, RF and LO ports are driven from 50Ωsources, PLO= -3dBm to
+3dBm, PRF= -5dBm, fRF= 815MHz to 995MHz, fLO= 960MHz to 1180MHz, fIF= 160MHz, fLO> fRF, TC= -40°C to +85°C, unless
otherwise noted. Typical values are at VCC= +5V, PRF = -5dBm, PLO= 0dBm, fRF= 910MHz, fLO= 1070MHz, fIF= 160MHz, TC=
+25°C, unless otherwise noted.) (Note 1)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITSRF Frequency RangefRF(Note 2)815995MHz
(Note 2)9601180LO Frequency RangefLOMAX9984570850MHz
IF Frequency RangefIF(Note 2)50250MHz
Conversion GainGCTC = +25°C91011dB
Gain Variation Over TemperatureTC = -40°C to +85°C-0.007dB/°C
Conversion Gain Flatness
Fl atness over any one of thr ee fr equency b and s:
fRF = 824MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
±0.15dB
Input Compression PointP1dB(Note 3)12dBm
Input Third-Order Intercept PointIIP3
Two tones:
fRF1 = 910MHz, fRF2 = 911MHz,
PRF = -5dBm/tone, fLO = 1070MHz,
PLO = 0dBm, TA = +25°C23.6dBm
TC = +25°C to -40°C-1.7Input IP3 Variation Over
TemperatureTC = +25°C to +85°C+1.0dB
MAX9986
SiGe High-Linearity, 815MHz to 995MHz
Downconversion Mixer with LO Buffer/Switch
Note 1:All limits include external component losses. Output measurements taken at IF output of the Typical Application Circuit.
Note 2:Operation outside this range is possible, but with degraded performance of some parameters.
Note 3:Compression point characterized. It is advisable not to operate continuously the mixer RF input above +12dBm.
Note 4:Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all
SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.
Note 5:Guaranteed by design and characterization.
AC ELECTRICAL CHARACTERISTICS (continued)(MAX9986 Typical Application Circuit, VCC= +4.75V to +5.25V, RF and LO ports are driven from 50Ωsources, PLO= -3dBm to
+3dBm, PRF= -5dBm, fRF= 815MHz to 995MHz, fLO= 960MHz to 1180MHz, fIF= 160MHz, fLO> fRF, TC= -40°C to +85°C, unless
otherwise noted. Typical values are at VCC= +5V, PRF = -5dBm, PLO= 0dBm, fRF= 910MHz, fLO= 1070MHz, fIF= 160MHz, TC=
+25°C, unless otherwise noted.) (Note 1)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITSNoise FigureNFSingle sideband, fIF = 190MHz9.3dBB LOC K E R = 8d Bm 19
Noise Figure Under-Blocking
fR F = 900M H z ( no si g nal )
fL O = 1090M H z
fB LOC K E R = 990M H z
fI F = 190M H zN ote 4) B LOC K E R = 11d Bm 24B LOC K E R = 8d Bm 0.3Small-Signal Compression
Under-Blocking Condition
PFUNDAMENTAL = -5dBm
fF U N D A M E N TA L = 910M H z
fB LOC K E R = 911M H zP B LOC K E R = 11d Bm 2
LO Drive-3+3dBm
PRF = -10dBm672 x 22LO-2RFPRF = -5dBm62
PRF = -10dBm87Spurious Response at IF
3 x 33LO-3RFPRF = -5dBm77
dBc
LO2 selected4249LO1 to LO2 IsolationPLO = +3dBm
TC = +25°C (Note 5)LO1 selected4250dB
LO Leakage at RF PortPLO = +3dBm-47dBm
LO Leakage at IF PortPLO = +3dBm-30dBm
RF-to-IF Isolation46dB
LO Switching Time50% of LOSEL to IF settled to within 2°50ns
RF Port Return Loss20dB
LO1/2 port selected,
LO2/1 and IF terminated27
LO Port Return Loss
LO1/2 port unselected,
LO2/1 and IF terminated26
IF Port Return LossLO driven at 0dBm, RF terminated into 50Ω,
differential 200Ω22dB
Typical Operating Characteristics(MAX9986 Typical Application Circuit, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, fLO> fRF, fIF= 160MHz, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX9986 toc01
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)TC = +85°C
TC = -25°C
TC = -40°C
TC = +25°C
CONVERSION GAIN vs. RF FREQUENCY
MAX9986 toc02
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
PLO = -3dBm, 0dBm, +3dBm
CONVERSION GAIN vs. RF FREQUENCY
MAX9986 toc03
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCYMAX9986 toc04
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
TC = +85°C
TC = -25°C
TC = -40°C
TC = +25°C
INPUT IP3 vs. RF FREQUENCYMAX9986 toc05
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
PLO = +3dBm, 0dBm, -3dBm
INPUT IP3 vs. RF FREQUENCYMAX9986 toc06
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
VCC = 5.25VVCC = 5.0V
VCC = 4.75V
NOISE FIGURE vs. RF FREQUENCY
MAX9986 toc07
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
IF = 190MHz
TC = -40°C
TC = +85°CTC = +25°C
TC = -25°C
NOISE FIGURE vs. RF FREQUENCY
MAX9986 toc08
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
PLO = +3dBm, 0dBm, -3dBm
IF = 190MHz
NOISE FIGURE vs. RF FREQUENCY
MAX9986 toc09
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
IF = 190MHz
VCC = 4.75V, 5.0V, 5.25V
MAX9986
SiGe High-Linearity, 815MHz to 995MHz
Downconversion Mixer with LO Buffer/Switch
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX9986 toc10
RF FREQUENCY (MHz)
2LO-2RF RESPONSE (dBc)
PRF = -5dBm
TC = -40°C, -25°C
TC = +85°C
TC = +25°C
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX9986 toc11
RF FREQUENCY (MHz)
2LO-2RF RESPONSE (dBc)
PLO = -3dBm
PLO = +3dBm
PLO = 0dBmPRF = -5dBm
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX9986 toc12
RF FREQUENCY (MHz)
2LO-2RF RESPONSE (dBc)VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
PRF = -5dBm
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX9986 toc13
RF FREQUENCY (MHz)
3LO-3RF RESPONSE (dBc)
PRF = -5dBm
TC = -40°C
TC = +25°CTC = +85°C
TC = -25°C
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX9986 toc14
RF FREQUENCY (MHz)
3LO-3RF RESPONSE (dBc)
PLO = -3dBm, 0dBm, +3dBm
PRF = -5dBm
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX9986 toc15
RF FREQUENCY (MHz)
3LO-3RF RESPONSE (dBc)VCC = 4.75V, 5.0V, 5.25V
PRF = -5dBm
INPUT P1dB vs. RF FREQUENCY
MAX9986 toc16
RF FREQUENCY (MHz)
INPUT P
1dB
(dBm)
TC = -40°C
TC = +25°CTC = +85°C
TC = -25°C
INPUT P1dB vs. RF FREQUENCY
MAX9986 toc17
RF FREQUENCY (MHz)
INPUT P
1dB
(dBm)
PLO = -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
MAX9986 toc18
RF FREQUENCY (MHz)
INPUT P
1dB
(dBm)
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
Typical Operating Characteristics (continued)(MAX9986 Typical Application Circuit, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, fLO> fRF, fIF= 160MHz, unless otherwise noted.)
MAX9986
SiGe High-Linearity, 815MHz to 995MHz
Downconversion Mixer with LO Buffer/Switch