MAX870EUK ,Switched-Capacitor Voltage InvertersELECTRICAL CHARACTERISTICS(V = +5V, C1 = C2 = 1µF (MAX870), C1 = C2 = 0.33µF (MAX871), T = 0°C to + ..
MAX870EUK+T ,Switched-Capacitor Voltage InvertersApplicationsMAX871EUK -40°C to +85°C 5 SOT23-5 ABZOLocal -5V Supply from 5V Logic SupplySmall LCD P ..
MAX870EUKT ,Switched-Capacitor Voltage InvertersELECTRICAL CHARACTERISTICS(V = +5V, C1 = C2 = 1µF (MAX870), C1 = C2 = 0.33µF (MAX871), T = 0°C to + ..
MAX8710ETG+ ,Low-Cost, Linear-Regulator LCD Panel Power SuppliesELECTRICAL CHARACTERISTICS(Circuit of Figure 1. V = V = V = 12V, V = V = 10V, V = 27V, T = 0°C to + ..
MAX8715EUA ,Low-Noise Step-Up DC-DC ConvertersApplicationsMAX1790EUA+ -40°C to +85°C 8 µMAXLCD Displays MAX8715EUA -40°C to +85°C 8 µMAXPCMCIA Ca ..
MAX8715EUA ,Low-Noise Step-Up DC-DC ConvertersApplications+ Denotes lead-free package.Hand-Held DevicesTypical Operating Circuit Pin Configuratio ..
MB84VD21183EM-70PBS , Stacked MCP (Multi-Chip Package) FLASH MEMORY & SRAM CMOS
MB84VD21194EM-70PBS , Stacked MCP (Multi-Chip Package) FLASH MEMORY & SRAM CMOS
MB84VD22181FM-70PBS , 32M (X16) FLASH MEMORY & 4M (X16) STATIC RAM
MB84VD22182EE-90 ,32M (x 8/x16) FLASH MEMORY & 4M (x 8/x16) STATIC RAMFUJITSU SEMICONDUCTORDS05-50204-2EDATA SHEETStacked MCP (Multi-Chip Package) FLASH MEMORY & SRAMCMO ..
MB84VD22183EE-90 ,32M (x 8/x16) FLASH MEMORY & 4M (x 8/x16) STATIC RAMFEATURES• Power supply voltage of 2.7 to 3.3 V• High performance90 ns maximum access time (Flash)85 ..
MB84VD22184FM-70 , 32M (X16) FLASH MEMORY & 4M (X16) STATIC RAM
MAX870EUK-MAX871EUK
Switched-Capacitor Voltage Inverters
_______________General DescriptionThe ultra-small MAX870/MAX871 monolithic, CMOS
charge-pump inverters accept input voltages ranging
from +1.4V to +5.5V. The MAX870 operates at 125kHz,
and the MAX871 operates at 500kHz. Their high efficien-
cy (90%) and low operating current (0.7mA for the
MAX870) make these devices ideal for both battery-pow-
ered and board-level voltage-conversion applications.
Oscillator control circuitry and four power MOSFET
switches are included on-chip. A typical MAX870/
MAX871 application is generating a -5V supply from a
+5V logic supply to power analog circuitry. Both parts
come in a 5-pin SOT23-5 package and can deliver 25mA
with a voltage drop of 500mV.
For applications requiring more power, the MAX860
delivers up to 50mA with a voltage drop of 600mV, in a
space-saving µMAX package.
________________________ApplicationsLocal -5V Supply from 5V Logic Supply
Small LCD Panels
Cell Phones
Medical Instruments
Handy-Terminals, PDAs
Battery-Operated Equipment
____________________________Features5-Pin SOT23-5 Package 99% Voltage Conversion EfficiencyInvert Input Supply Voltage0.7mA Quiescent Current (MAX870)+1.4V to +5.5V Input Voltage Range Require Only Two Capacitors25mA Output CurrentShutdown Control
MAX870/MAX871
Switched-Capacitor Voltage Inverters
__________________Pin Configuration
__________Typical Operating Circuit19-1240; Rev 0; 6/97
MAX870/MAX871
Switched-Capacitor Voltage Inverters
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS(VIN= +5V, C1 = C2 = 1µF (MAX870), C1 = C2 = 0.33µF (MAX871), TA
= 0°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.)
ELECTRICAL CHARACTERISTICS(VIN= +5V, C1 = C2 = 1µF (MAX870), C1 = C2 = 0.33µF (MAX871), TA
= -40°C to +85°C, unless otherwise noted.) (Note 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Note 1:Capacitor contribution is approximately 20% of the output impedance [ESR + 1 / (pump frequency x capacitance)].
Note 2:All -40°C to +85°C specifications are guaranteed by design.
IN to GND..............................................................+6.0V to -0.3V
OUT to GND..........................................................-6.0V to +0.3V
C1+..............................................................(VIN + 0.3V) to -0.3V
C1-............................................................(VOUT- 0.3V) to +0.3V
OUT Output Current ...........................................................50mA
OUT Short Circuit to GND .............................................Indefinite
Continuous Power Dissipation (TA= +70°C)
SOT23-5 (derate 7.1mW/°C above +70°C)...................571mW
Operating Temperature Range
MAX870EUK/MAX871EUK...............................-40°C to +85°C
Storage Temperature Range.............................-65°C to +160°C
Lead Temperature (soldering, 10sec).............................+300°C
MAX870/MAX871
Switched-Capacitor Voltage Inverters
__________________________________________Typical Operating Characteristics(Circuit of Figure 1, VIN= +5V, C1 = C2 = C3, TA= +25°C, unless otherwise noted.)
_____________________Pin Description
MAX870/MAX871
Switched-Capacitor Voltage Inverters
____________________________Typical Operating Characteristics (continued)(Circuit of Figure 1, VIN= +5V, C1 = C2 = C3, TA
_______________Detailed DescriptionThe MAX870/MAX871 capacitive charge pumps invert
the voltage applied to their input. For highest perfor-
mance, use low equivalent series resistance (ESR)
capacitors (e.g., ceramic).
During the first half-cycle, switches S2 and S4 open,
switches S1 and S3 close, and capacitor C1 charges to
the voltage at IN (Figure 2). During the second half-
cycle, S1 and S3 open, S2 and S4 close, and C1 is level
shifted downward by VINvolts. This connects C1 in par-
allel with the reservoir capacitor C2. If the voltage across
C2 is smaller than the voltage across C1, then charge
flows from C1 to C2 until the voltage across C2 reaches
-VIN. The actual voltage at the output is more positive
than -VIN, since switches S1–S4 have resistance and the
load drains charge from C2.
Charge-Pump OutputThe MAX870/MAX871 are not voltage regulators: the
charge pump’s output source resistance is approxi-
mately 20Ωat room temperature (with VIN= +5V), and
VOUTapproaches -5V when lightly loaded. VOUTwill
droop toward GND as load current increases. The
droop of the negative supply (VDROOP-) equals the cur-
rent draw from OUT (IOUT) times the negative convert-
er’s source resistance (RS-):
VDROOP-= IOUTx RS-
The negative output voltage will be:
VOUT= -(VIN– VDROOP-)
Efficiency ConsiderationsThe power efficiency of a switched-capacitor voltage
converter is affected by three factors: the internal loss-
es in the converter IC, the resistive losses of the pump
capacitors, and the conversion losses during charge
transfer between the capacitors. The total power loss is:
The internal losses are associated with the IC’s internal
functions, such as driving the switches, oscillator, etc.
These losses are affected by operating conditions such
as input voltage, temperature, and frequency.
The next two losses are associated with the voltage
converter circuit’s output resistance. Switch losses
occur because of the on-resistance of the MOSFET
switches in the IC. Charge-pump capacitor losses
occur because of their ESR. The relationship between
these losses and the output resistance is as follows:
where fOSCis the oscillator frequency. The first term is
the effective resistance from an ideal switched-
capacitor circuit. See Figures 3a and 3b.
MAX870/MAX871
Switched-Capacitor Voltage InvertersFigure 3b. Equivalent Circuit
MAX870/MAX871
Switched-Capacitor Voltage InvertersConversion losses occur during the charge transfer
between C1 and C2 when there is a voltage difference
between them. The power loss is:
__________Applications Information
Capacitor SelectionTo maintain the lowest output resistance, use capaci-
tors with low ESR (Table 1). The charge-pump output
resistance is a function of C1’s and C2’s ESR.
Therefore, minimizing the charge-pump capacitor’s
ESR minimizes the total output resistance.
Flying Capacitor (C1)Increasing the flying capacitor’s size reduces the out-
put resistance. Small C1 values increase the output
resistance. Above a certain point, increasing C1’s
capacitance has a negligible effect, because the out-
put resistance becomes dominated by the internal
switch resistance and capacitor ESR.
Output Capacitor (C2)Increasing the output capacitor’s size reduces the out-
put ripple voltage. Decreasing its ESR reduces both
output resistance and ripple. Smaller capacitance val-
ues can be used with light loads if higher output ripple
can be tolerated. Use the following equation to calcu-
late the peak-to-peak ripple:
Input Bypass CapacitorBypass the incoming supply to reduce its AC impedance
and the impact of the MAX870/MAX871’s switching
noise. The recommended bypassing depends on the cir-
cuit configuration and on where the load is connected.
When the inverter is loaded from OUT to GND, current
from the supply switches between 2 x IOUTand zero.
Therefore, use a large bypass capacitor (e.g., equal to
the value of C1) if the supply has a high AC impedance.
When the inverter is loaded from IN to OUT, the circuit
draws 2 x IOUTconstantly, except for short switching
spikes. A 0.1µF bypass capacitor is sufficient.
Voltage InverterThe most common application for these devices is a
charge-pump voltage inverter (Figure 1). This applica-
tion requires only two external components—capacitors
C1 and C2—plus a bypass capacitor, if necessary.
Refer to the Capacitor Selection section for suggested
capacitor types.
Cascading DevicesTwo devices can be cascaded to produce an even
larger negative voltage (Figure 4). The unloaded output
voltage is normally -2 x VIN, but this is reduced slightly
by the output resistance of the first device multiplied by
the quiescent current of the second. When cascading
more than two devices, the output resistance rises dra-
matically. For applications requiring larger negative
voltages, see the MAX864 and MAX865 data sheets.
Paralleling DevicesParalleling multiple MAX870s or MAX871s reduces the
output resistance. Each device requires its own pump
capacitor (C1), but the reservoir capacitor (C2) serves
all devices (Figure 5). Increase C2’s value by a factor
of n, where n is the number of parallel devices. Figure 5
shows the equation for calculating output resistance.
Combined Doubler/InverterIn the circuit of Figure 6, capacitors C1 and C2 form the
inverter, while C3 and C4 form the doubler. C1 and C3
are the pump capacitors; C2 and C4 are the reservoir
Table 1. Low-ESR Capacitor Manufacturers