MAX1513ETP+T ,TFT-LCD Power-Supply ControllersELECTRICAL CHARACTERISTICS(Circuit of Figure 1, V = 3V, V = 10V, SDFR = IN, C = 0.22µF, T = 0°C to ..
MAX1515ETG ,+1.3 V to +3.6 V, Low-voltage, internal switch, step-down/DDR regulatorfeatures dual internal♦ 1MHz Maximum Switching Frequencyn-channel MOSFET power switches for high ef ..
MAX1515ETG+ ,Low-Voltage, Internal Switch, Step-Down/DDR Regulatorfeatures dual internal♦ 1MHz Maximum Switching Frequencyn-channel MOSFET power switches for high ef ..
MAX1515ETG+T ,Low-Voltage, Internal Switch, Step-Down/DDR RegulatorApplications VCCMAX1515 V = VOUT TTNotebook DDR Memory Termination COMPLXPGOODFBActive-Termination ..
MAX1517ETJ ,TFT-LCD DC-DC Converters with Operational AmplifiersFeaturesThe MAX1516/MAX1517/MAX1518 include a high-perfor-♦ 2.6V to 5.5V Input Supply Rangemance st ..
MAX1517ETJ+ ,TFT-LCD DC-DC Converters with Operational AmplifiersFeaturesThe MAX1516/MAX1517/MAX1518 include a high-perfor-♦ 2.6V to 5.5V Input Supply Rangemance st ..
MAX4163ESA+T ,SOT23, Micropower, Single-Supply, Rail-to-Rail I/O Op AmpsELECTRICAL CHARACTERISTICS: 3V Operation(V = 3V, V = 0V, V = V /2, V = V /2, R connected to V /2, T ..
MAX4163ESA+T ,SOT23, Micropower, Single-Supply, Rail-to-Rail I/O Op AmpsMAX4162/MAX4163/MAX416419-1195; Rev 3; 1/10UCSP, Micropower, Single-Supply, 10V,Rail-to-Rail I/O Op ..
MAX4163ESA-T ,SOT23, Micropower, Single-Supply, Rail-to-Rail I/O Op AmpsELECTRICAL CHARACTERISTICS: 3V Operation(V = 3V, V = 0V, V = V /2, V = V /2, R connected to V /2, T ..
MAX4163EUA ,SOT23 / Micropower / Single-Supply / Rail-to-Rail I/O Op AmpsELECTRICAL CHARACTERISTICS: +3V Operation(V =+3V, V = 0V, V = V / 2, V = V / 2, R tied to V / 2, T ..
MAX4163EUA ,SOT23 / Micropower / Single-Supply / Rail-to-Rail I/O Op AmpsGeneral Description ________
MAX4163EUA ,SOT23 / Micropower / Single-Supply / Rail-to-Rail I/O Op AmpsApplicationsMAX4162EUK -40°C to +85°C 5 SOT23-5 AABXBattery-Powered Devices Medical InstrumentsMAX4 ..
MAX1513ETP+-MAX1513ETP+T
TFT-LCD Power-Supply Controllers
General DescriptionThe MAX1513/MAX1514 provide complete power-sup-
ply solutions for active-matrix thin-film transistor (TFT)
liquid-crystal displays (LCDs). Both devices include a
high-performance step-up regulator controller, three lin-
ear-regulator controllers, and an adjustable delay block
for startup sequencing. The MAX1513 includes an
additional linear-regulator controller and a high-perfor-
mance buffer amplifier. The MAX1513/MAX1514 can
operate from 2.7V to 5.5V input supplies and provide
overload protection with timer delay latch on all the reg-
ulated outputs.
The step-up regulator controller drives an external N-
channel MOSFET to generate the regulated supply volt-
age for the panel source-driver ICs. Its current-mode
control architecture provides fast transient response to
pulsed loads. The high switching frequency (up to
1.5MHz) allows the use of ultra-small inductors and
ceramic capacitors while achieving efficiencies over 85%
using lossless current sensing. The internal soft-start lim-
its the input surge current during startup.
The gate-on and gate-off linear-regulator controllers of
the MAX1513/MAX1514 provide regulated TFT gate-on
and gate-off supplies. The gate-on supply is activated
after an adjustable delay following the step-up regulator.
The logic linear-regulator controller can be used to cre-
ate a low-voltage logic supply. The gamma linear-regula-
tor controller of the MAX1513 can be used to generate a
gamma-correction reference supply or another general-
purpose supply rail.The MAX1513’s high-performance
buffer amplifier can drive the LCD backplane (VCOM)
or the gamma-correction divider string.
The MAX1513/MAX1514 are available in 4mm ✕4mm
20-pin thin QFN packages with a maximum thickness of
0.8mm, suitable for ultra-thin LCD panel design.
ApplicationsNotebook Computer Displays
LCD Monitors and TVs
Automotive Displays
Features2.7V to 5.5V Input Supply RangeInput-Supply Undervoltage LockoutCurrent-Mode Step-Up Controller
Fast Transient Response to Pulsed Load
High Efficiency
Lossless Current Sensing
430kHz/750kHz/1.5MHz Switching FrequencyLinear-Regulator Controllers for VGON, VGOFFLinear-Regulator Controller for Logic SupplyHigh-Performance Buffer Amplifier (MAX1513 Only)Additional Linear-Regulator Controller
(MAX1513 Only)Power-Up Sequence and VGONDelay ControlVMAIN, VGON, VGOFF, VGAMMAShutdown ControlTimer-Delay Fault Latch for All OutputsThermal-Overload Protection
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
Ordering Information19-3047; Rev 0; 10/03
PARTTEMP RANGEPIN-PACKAGE
MAX1513ETP-40°C to +85°C20 Thin QFN 4mm x 4mm
MAX1514ETP-40°C to +85°C20 Thin QFN 4mm x 4mm
Pin Configuration appears at end of data sheet.
EVALUATION KIT
AVAILABLEMAX1513
MAX1514
SDFR
VGAMMA
VIN
DEL
DRVL
FBLVLOGIC
VMAIN
DRVG
FBG
SUPB
FBPB
OUTBTO VCOM
VMAIN
VGOFF
VGON
CS+
CS-
GATE
GND
DRVP
FBP
DRVN
FBN
REF
Minimal Operating Circuit
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
FB, FBP, FBN, FBG, FBL, IN, CS+,
CS-, SDFRto GND...............................................-0.3V to +6V
DEL, GATE, REF to GND.............................-0.3V to (VIN+ 0.3V)
SUPB to GND.........................................................-0.3V to +14V
OUTB, FBPB to GND..............................-0.3V to (VSUPB+ 0.3V)
DRVP, DRVG, DRVL to GND..................................-0.3V to +30V
DRVN to GND.....................................(VIN- 28V) to (VIN+ 0.3V)
OUTB Continuous Output Current....................................±75mA
Continuous Power Dissipation (TA= +70°C)
20-Pin TQFN (derate 16.9mW/°C above +70°C).......1349mW
Operating Temperature Range...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10s).................................+300°C
ELECTRICAL CHARACTERISTICS(Circuit of Figure 1, VIN= 3V, VSUPB= 10V, SDFR= IN, CREF= 0.22µF, TA
= 0°C to +85°C. Typical values are at TA= +25°C, unless
otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITSIN Supply RangeVIN2.75.5V
VIN rising2.52.72.9IN Undervoltage-Lockout
ThresholdVUVLO350mV typical hysteresisVIN falling2.22.352.5V
IN Quiescent CurrentIINVFB = VFBP = VFBL = VFBG = 1.5V, VFBN = 01.25mA
IN Shutdown CurrentVSDFR = 0, VFBL = 1.5V150µA
REF Output Voltage-2µA < IREF < 100µA, 2.7V < VIN < 5.5V1.2311.2501.269V
Temperature rising+160Thermal ShutdownHysteresis15°C
Duration to Trigger Fault Latch43.6ms
MAIN STEP-UP CONTROLLERSDFR = IN 1.275 1.500 1.725
SDFR = REF0.600.750.90 Operating Frequency fOSC
SDFR = unconnected0.43MHzOscillator Maximum Duty Cycle 80 85 90 %FB Regulation Voltage VFB VCS+ - VCS- = 0 1.237 1.25 1.263 VFB Fault Trip Level VFB falling 0.96 1.00 1.04 VFB Load Regulation 0 < (VCS+ - VCS-) < 50mV -1 %FB Line Regulation VIN = 2.7V to 5.5V 0.1 0.2 % / V FB Input Bias Current VFB = 1.5V -100 +100 nA
CS+ Input Current2.2V < VCS+ < 6V90µA
CS- Input Current2.2V < VCS- < 6V-1+1µA
Current-Limit ThresholdVCS+ - VCS-, 2.2V < VCS+ < 6V100125150mV
Gate-Drive OutputHigh or low35Ω
Soft-Start PeriodtSS2.7ms
Soft-Start Step SizeVREF / 128V
GATE-ON LINEAR-REGULATOR CONTROLLER (REG P)FBP Regulation Voltage VFBP IDRVP = 50µA 1.225 1.250 1.275 VFBP Fault Trip Level VFBP falling 0.96 1.00 1.04 VFBP Input Bias Current VFBP = 1.5V -250 +250 nA
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
ELECTRICAL CHARACTERISTICS (continued)(Circuit of Figure 1, VIN= 3V, VSUPB= 10V, SDFR= IN, CREF= 0.22µF, TA
= 0°C to +85°C. Typical values are at TA= +25°C, unless
otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITSFBP Effective Load-Regulation
Error (Transconductance) VDRVP = 10V, IDRVP = 25µA to 500µA -1.5 -2 %FBP Line (IN)-Regulation Error IDRVP = 50µA, 2.7V < VIN < 5.5V 8 mVDRVP Sink Current IDRVP VFBP = 1.1V, VDRVP = 10V 1 mADRVP Off-Leakage Current VFBP = 1.5V, VDRVP = 28V 0.15 10 µA
DEL Charge CurrentDuring startup, VDEL = 1.0V456µA
DEL Turn-On ThresholdVTH(DEL)1.191.251.31V
DEL Discharge Switch
On-ResistanceVIN = 3.0V, VFB = 0.8V15ΩSoft-Start Period tSS 2.7 msSoft-Start Step Size VREF / 128 V
GAMMA LINEAR-REGULATOR CONTROLLER (REG G, MAX1513 ONLY)FBG Regulation Voltage VFBG IDRVG = 0.35mA 1.235 1.250 1.265 VFBG to FB Regulation Voltage
Matching IDRVG = 0.5mA, VCS+ - VCS- = 0 -1.2 +1.2 %FBG Fault Trip Level VFBG falling 0.96 1.00 1.04 VFBG Input Bias Current VFBG = 1.5V -250 +250 nAFBG Effective Load-Regulation
Error (Transconductance) VDRVG = 10V, IDRVG = 0.175mA to 3.5mA -1.5 -2 %FBG Line (IN)-Regulation Error IDRVG = 0.5mA, 2.7V < VIN < 5.5V 5 mVDRVG Sink Current IDRVG VFBG = 1.1V, VDRVG = 10V 5 mADRVG Off-Leakage Current VFBG = 1.5V, VDRVG = 28V 0.15 10 µASoft-Start Period tSS 2.7 msSoft-Start Step Size VREF / 128 V
LOGIC LINEAR-REGULATOR CONTROLLER (REG L)FBL Regulation Voltage VFBL IDRVL = 0.8mA 1.225 1.250 1.275 VFBL Fault Trip Level VFBL falling 0.96 1.00 1.04 VFBL Input Bias Current VFBL = 1.5V -250 +250 nAFBL Effective Load-Regulation
Error (Transconductance) VDRVL = 3V, IDRVL = 0.4mA to 8mA -1.5 -2 %FBL Line (IN)-Regulation Error IDRVL = 1mA, 2.7V < VIN < 5.5V 8 mVDRVL Sink Current IFBL VFBL = 1.1V, VDRVL = VIN 15 20 mADRVL Off-Leakage Current VFBL = 1.5V, VDRVL = 28V 0.15 10 µASoft-Start Period tSS 2.7 msSoft-Start Step Size VREF / 128 V
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
ELECTRICAL CHARACTERISTICS (continued)(Circuit of Figure 1, VIN= 3V, VSUPB= 10V, SDFR= IN, CREF= 0.22µF, TA
= 0°C to +85°C. Typical values are at TA= +25°C, unless
otherwise noted.)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
GATE-OFF LINEAR-REGULATOR CONTROLLER (REG N)FBN Regulation Voltage VFBN IDRVN = 0.2mA 220 250 280 mVFBN Fault Trip Level VFBN rising 380 420 460 mVFBN Input Bias Current VFBN = 0V -250 +250 nAFBN Effective Load-Regulation
Error (Transconductance) VDRVN = -10V, IDRVN = 0.1mA to 2mA 18 25 mVFBN Line (IN)-Regulation Error IDRVN = 0.2mA, 2.7V < VIN < 5.5V 5 mVDRVN Source Current IFBN VFBN = 0.3V, VDRVN = -10V 5 mADRVN Off-Leakage Current VFBN = -0.1V, VDRVN = -20V 0.1 10 µASoft-Start Period tSS 2.7 msSoft-Start Step Size VREF / 128 V
BUFFER AMPLIFIERSUPB Supply Range VSUPB 4.5 13.0 VSUPB Supply Current ISUPB No load, VFBPB = 4V 0.75 1.1 mAFBPB Input Offset Voltage VOS VFBPB = VSUPB / 2 0 12 mVFBPB Input Bias Current IBIASVFBPB = VSUPB / 2 50 nAFBPB Input Common-Mode
Range VCM 0 VSUPB VCommon-Mode Rejection Ratio CMRR 0 < VFBPB < VSUPB 50 dBOutput-Voltage-Swing High VOH IOUTB = 5mA VSUPB -
150 VSUPB - mVOutput-Voltage-Swing Low VOL IOUTB = -5mA 80 150 mVShort-Circuit Current ±50 ±150 mAPower-Supply Rejection Ratio PSRR DC, 6V ≤ VSUPB ≤ 13V, VFBPB = 4V 60 80 dBSlew Rate 10 V/µs-3dB Bandwidth RL = 10kΩ, CL = 10pF 12 MHz
CONTROL INPUTS AND OUTPUTSSDFR = IN (1.5MHz operation)0.9 × VIN
SDFR = unconnected (430kHz operation)0.69 × VIN 0.77 × VIN
SDFR = REF (750kHz operation)1.001.35SDFR Input Level
SDFR = GND (LCD shutdown)0.5
SDFR = IN+3.0
SDFR = REF-3.0SDFR Input Current
SDFR = GND-3.0
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
ELECTRICAL CHARACTERISTICS(Circuit of Figure 1, VIN= 3V, VSUPB= 10V, SDFR= IN, CREF= 0.22µF, TA
= -40°C to +85°C, unless otherwise noted.) (Note 1)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITSIN Supply RangeVIN2.75.5V
VIN rising2.52.9IN Undervoltage-Lockout
ThresholdVUVLO350mV typical
hysteresisVIN falling2.22.5V
IN Quiescent CurrentIINVFB = VFBP = VFBL = VFBG = 1.5V,
VFBN = 01.25mA
REF Output Voltage-2µA < IREF < 100µA, 2.7V < VIN < 5.5V1.2251.275V
MAIN STEP-UP CONTROLLERSDFR = IN 1.275 1.725 Operating Frequency fOSCSDFR = REF0.600.90 MHzFB Regulation Voltage VFB VCS+ - VCS- = 0 1.230 1.270 VFB Line Regulation VIN = 2.7V to 5.5V 0.2 % / V FB Input Bias Current VFB = 1.5V -100 +100 nA
CS+ Input Current2.2V < VCS+ < 6V90µA
CS- Input Current2.2V < VCS- < 6V-1+1µA
Current-Limit ThresholdVCS+ - VCS-, 2.2V < VCS+ < 6V100150mV
Gate-Drive OutputHigh or low5Ω
GATE-ON LINEAR-REGULATOR CONTROLLER (REG P)FBP Regulation Voltage VFBP IDRVP = 0.1mA 1.225 1.275 VFBP Input Bias Current VFBP = 1.5V -250 +250 nAFBP Effective Load-Regulation
Error (Transconductance) VDRVP = 10V, IDRVP = 0.05mA to 1mA -2 %DRVP Sink Current IDRVP VFBP = 1.1V, VDRVP = 10V 2 mA
DEL Turn-On ThresholdVTH(DEL)1.191.31V
GAMMA LINEAR-REGULATOR CONTROLLER (REG G, MAX1513 ONLY)FBG Regulation Voltage VFBG IDRVG = 0.5mA 1.235 1.265 VFBG to FB Regulation Voltage
Matching IDRVG = 0.5mA, VCS+ - VCS- = 0 -1.2 +1.2 %FBG Input Bias Current VFBG = 1.5V -250 +250 nAFBG Effective Load-Regulation
Error (Transconductance) VDRVG = 10V, IDRVG = 0.25mA to 5mA -2 %DRVG Sink Current IDRVG VFBG = 1.1V, VDRVG = 10V 10 mA
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
ELECTRICAL CHARACTERISTICS (continued)(Circuit of Figure 1, VIN= 3V, VSUPB= 10V, SDFR= IN, CREF= 0.22µF, TA
= -40°C to +85°C, unless otherwise noted.) (Note 1)
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITS
LOGIC LINEAR-REGULATOR CONTROLLER (REG L)FBL Regulation Voltage VFBL IDRVL = 1mA 1.225 1.275 VFBL Input Bias Current VFBL = 1.5V -250 +250 nAFBL Effective Load-Regulation
Error (Transconductance) VDRVL = 3V, IDRVL = 0.5mA to 10mA -2 %DRVL Sink Current IFBL VFBL = 1.1V, VDRVL = VIN 20 mA
GATE-OFF LINEAR-REGULATOR CONTROLLER (REG N)FBN Regulation Voltage VFBN IDRVN = 0.2mA 220 280 mVFBN Input Bias Current VFBN = 0V -250 +250 nAFBN Effective Load-Regulation
Error (Transconductance) VDRVN = -10V, IDRVN = 0.1mA to 2mA 25 mVDRVN Source Current IFBN VFBN = 0.3V, VDRVN = -10V 5 mA
BUFFER AMPLIFIERSUPB Supply Range VSUPB 4.5 13.0 VSUPB Supply Current ISUPB No load, VFBPB = 4V 1.1 mAFBPB Input Offset Voltage VOS VFBPB = VSUPB / 2 12 mVFBPB Input Bias Current IBIASVFBPB = VSUPB / 2 50 nAFBPB Input Common-Mode
Range VCM 0 VSUPB VOutput-Voltage-Swing High VOH IOUTB = 5mA VSUPB - 150 mVOutput-Voltage-Swing Low VOL IOUTB = -5mA 150 mV
CONTROL INPUTS AND OUTPUTSSDFR = IN (1.5MHz operation)0.9 × VIN
SDFR = unconnected (430kHz operation)0.69 × VIN 0.77 × VIN
SDFR = REF (750kHz operation)1.001.35SDFR Input Level
SDFR = GND (LCD shutdown)0.5
SDFR = IN+3.0
SDFR = REF-3.0SDFR Input Current
SDFR = GND-3.0
Note 1:Specifications to -40°C are guaranteed by design, not production tested.
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
Typical Operating Characteristics(Circuit of Figure 1, VIN= 5V, VMAIN= 15V, VGON= 25V, VGOFF= -10V, VLOGIC= 3.3V, VGAMMA= 14.7V, TA= +25°C, unless other-
wise noted.)
STEP-UP OUTPUT VOLTAGE
vs. LOAD CURRENTMAX1513/14 toc02
LOAD CURRENT (mA)
OUTPUT VOLTAGE (V)
VIN = 5V
VIN = 15V
fOSC = 1.5MHz
STEP-UP EFFICIENCY
vs. LOAD CURRENT (1.5MHz)MAX1513/14 toc01
LOAD CURRENT (mA)
EFFICIENCY (%)
VIN = 5.0V
VIN = 2.7VVIN = 3.3V
STEP-UP REGULATOR
LOAD-TRANSIENT RESPONSEMAX1513/14 toc03
4μs/div
VMAIN
100mV
AC-COUPLED
IMAIN
500mA/div
0.1A
1A/div
STEP-UP REGULATOR
PULSED-LOAD-TRANSIENT RESPONSEMAX1513/14 toc04
4μs/div
VMAIN
100mV/div
AC-COUPLED
IMAIN
1A/div
0.1A
1A/div
STEP-UP REGULATOR SOFT-START MAX1513/14 toc05
400μs/div
VMAIN
5V/div
2A/div
POWER-UP SEQUENCE MAX1513/14 toc06
4ms/div
VLOGIC
5V/div
VMAIN
20V/div
VGON
20V/div
VGOFF
10V/div
VGAMMA
20V/div
LINEAR REGULATOR REG L
LOAD-TRANSIENT RESPONSE MAX1513/14 toc07
20μs/div
VLOGIC
50mV/div
AC-COUPLED
ILOGIC
500mA/div
0mA
BUFFER-AMPLIFIER SUPPLY CURRENT
vs. SUPPLY VOLTAGEMAX1513/14 toc08
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)1086
NO LOAD
VFBPB = VSUPB / 2
BUFFER-AMPLIFIER SMALL-SIGNAL
STEP RESPONSEMAX1513/14 toc09
400ns/div
VFBPB
50mV/div
AC-COUPLED
VOUTB
50mV/div
AC-COUPLED
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
Pin Description
NAMEPINMAX1513MAX1514FUNCTIONREFREFInternal Reference. Connect a 0.22µF ceramic capacitor from REF to the analog ground plane,
which is connected to GND. External load capability is at least 100µA.SDFRSDFR
LCD Shutdown and Frequency-Select Input.
SDFR = GND, LCD shutdown, REF, buffer amplifier and the logic regulator (REG L) output stay on
SDFR = IN, 1.5MHz switching frequency
SDRF = REF, 750kHz switching frequency
SDFR = unconnected, 430kHz switching frequencyFBPBN.C.Buffer-Amplifier Noninverting Input for the MAX1513. Not internally connected for the MAX1514.OUTBN.C.Buffer-Amplifier Output for the MAX1513. Not internally connected for the MAX1514.SUPBN.C.Buffer-Amplifier Supply Input for the MAX1513. Bypass to GND with a 0.1µF capacitor. Not internally
connected for the MAX1514.FBNFBN
Gate-Off Linear Regulator (REG N) Feedback Input. FBN regulates to 125mV nominal. Connect to
the center tap of a resistive voltage-divider between the REG N output and the reference voltage
(REF) to set the output voltage. Place the resistive-divider close to this pin.DELDELDelay-Control Timing Capacitor. Connect a capacitor from DEL to GND to set the gate-on linear-
regulator startup delay. See the Power-Up Sequence and Delay Control Block section.
BUFFER-AMPLIFIER LARGE-SIGNAL
STEP RESPONSEMAX1513/14 toc10
1μs/div
VFBPB
5V/div
AC-COUPLED
VOUTB
5V/div
AC-COUPLED
BUFFER-AMPLIFIER
LOAD-TRANSIENT RESPONSEMAX1513/14 toc11
1μs/div
VOUTB
1V/div
AC-COUPLED
IOUTB
50mA/div
0mA
Typical Operating Characteristics (continued)(Circuit of Figure 1, VIN= 5V, VMAIN= 15V, VGON= 25V, VGOFF= -10V, VLOGIC= 3.3V, VGAMMA= 14.7V, TA= +25°C, unless other-
wise noted.)
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
Pin Description (continued)
NAMEPINMAX1513MAX1514FUNCTIONDRVNDRVNREG N Base Drive. Open drain of an internal P-channel MOSFET. Connect to the base of an
external NPN linear-regulator pass transistor.DRVLDRVLLogic Linear-Regulator (REG L) Base Drive. Open drain of an internal N-channel MOSFET. Connect
to the base of an external PNP linear-regulator pass transistor.FBLFBL
REG L Feedback Input. FBL regulates to 1.25V (typ). Connect to the center tap of a resistive
voltage-divider between the REG L output and the analog ground plane to set the output voltage.
Place the resistive voltage-divider close to this pin.DRVGN.C.
Gamma Linear-Regulator (REG G) Base Drive for the MAX1513. Open drain of an internal N-channel
MOSFET. Connect to the base of an external PNP linear-regulator pass transistor. Not internally
connected for the MAX1514.FBGN.C.
REG G Feedback Input for MAX1513. FBG regulates to 1.25V (typ). Connect to the center tap of a
resistive voltage-divider between the REG G output and the analog ground plane to set the output
voltage. Place the divider close to the FBG pin. Not internally connected for the MAX1514.FBPFBP
Gate-On Linear-Regulator (REG P) Feedback Input. FBP regulates to 1.25V (typ). Connect to the
center tap of a resistive voltage-divider between the REG P output and the analog ground plane to
set the output voltage. Place the resistive-divider close to this pin.DRVPDRVPREG P Base Drive. Open drain of an internal N-channel MOSFET. Connect to the base of an
external PNP linear-regulator pass transistor.GNDGNDGroundGATEGATEExternal MOSFET Gate Drive. Drives the gate of the step-up switching regulator’s MOSFET.ININ
Supply Input. IN powers all the internal circuitry of the MAX1513/MAX1514. The input voltage range
is from 2.7V to 5.5V. Bypass with a 0.1µF ceramic capacitor between IN and GND. Place the
capacitor within 5mm of IN.CS+CS+Current-Sense-Comparator Noninverting Input. Connect CS+ and CS- to the lossless current-sense
network. See the Lossless Current Sense section.CS-CS-Current-Sense-Comparator Inverting Input. Connect CS+ and CS- to the lossless current-sense
network. See the Lossless Current Sense section.FBFB
Main Step-Up Regulator Feedback Input. FB regulates to 1.25V (typ). Connect to the center tap of a
resistive voltage-divider between the main output (VMAIN) and the analog ground plane to set the
main step-up regulator output voltage. Place the resistive-divider close to this pin.
MAX1513/MAX1514
TFT-LCD Power-Supply ControllersCS+CS-
GATE
SDFR
DEL
DRVL
FBL18
VIN
4.5V TO 5.5V
2.2μHD1
22μF
6.3V
110kΩ
10.0kΩ
R11
10Ω
10μF
680Ω
16.5kΩ
10.0kΩ
VMAIN
15V/400mA
VLOGIC
3.3V/500mA
470pF
909Ω
OPEN
1MΩ
DRVP
FBP
6.8kΩ
191kΩ
10.0kΩ
DRVG
FBG
1.5kΩ
107kΩ
R10
10.0kΩ20
GND
OUTB
FBPB
SUPB5
DRVN
FBN
0.47μF
3.6kΩ
102kΩ
10.0kΩ
0.1μF
0.1μF
REF1
TO VCOM
BACKPLANE
VGAMMA
14.7V/30mA
0.1μF
0.47μF
0.22μF
VGOFF
-10V/30mA
VGON
25V/20mA
0.1μF
C10
1μF
2.2μF
10μF
16V
0.1μF
0.47μF
0.1μF
0.1μF
0.47μF
MAX1513
Figure 1. Typical Operating Circuit of the MAX1513
MAX1513/MAX1514
TFT-LCD Power-Supply ControllersFigure 2. Typical Operating Circuit of the MAX1514
CS+CS-
GATE
SDFR
DEL
DRVL
FBL18
VIN
4.5V TO 5.5V
2.2μHD1
22μF
6.3V
110kΩ
10.0kΩ
R11
10Ω
10μF
680Ω
16.5kΩ
10.0kΩ
VMAIN
15V/400mA
VLOGIC
3.3V/500mA
909Ω
OPEN
DRVP
FBP
6.8kΩ
191kΩ
10.0kΩ20
GND
DRVN
FBN
0.47μF
3.6kΩ
102kΩ
10.0kΩ
0.1μF
0.1μF
REF1
0.1μF
0.47μF
0.22μF
VGOFF
-10V/30mA
VGON
25V/20mA
C10
1μF
2.2μF
0.1μF
0.1μF
0.47μF
MAX1514
10μF
16V
470pF
1MΩ
MAX1513/MAX1514
TFT-LCD Power-Supply ControllersCS+
CS-
GATE
GND
MAIN STEP-UP
CONTROLLER
WITH SOFT-START
AND FAULT
COMPARATOR
REG P
WITH SOFT-START
AND FAULT
COMPARATOR
REG N
WITH SOFT-START
AND FAULT
COMPARATOR
REFERENCE
THERMAL
SHUTDOWN
DRVP
FBP
DRVN
FBN
REF
OP-AMP
CONTROL
BLOCK
REG G
WITH SOFT-START
AND FAULT
COMPARATOR
REG L
WITH SOFT-START
AND FAULT
COMPARATOR
SDFR
DEL
DRVL
FBL
DRVG
FBG
SUPB
FBPB
OUTB
TO VCOM
VGAMMA
VMAIN
VLOGIC
VIN
VIN
VMAIN
VGON
VGOFF
MAX1513
MAX1514
MAX1513 ONLYFigure 3. MAX1513/MAX1514 Functional Diagram
MAX1513/MAX1514
TFT-LCD Power-Supply Controllers
Typical Operating CircuitThe typical operating circuit of the MAX1513 (Figure 1) is
a complete power-supply system for TFT LCDs. The cir-
cuit generates a +15V source-driver supply, +25V and
-10V gate-driver supplies, a +3.3V logic supply for the
timing controller, a 14.7V gamma-correction string supply
and a VCOM buffer. The typical operating circuit of the
MAX1514 (Figure 2) is similar to that of the MAX1513
except the gamma-correction string supply and the
VCOM buffer have been eliminated. The input voltage
range for the IC is from +2.7V to +5.5V. The typical oper-
ating circuits’ listed load currents are available from a
+4.5V to +5.5V supply. Table 1 lists recommended com-
ponent options, and Table 2 lists the component suppli-
ers’ contact information.
Detailed DescriptionThe MAX1513 and MAX1514 contain a high-perfor-
mance, step-up switching-regulator controller and three
linear-regulator controllers (two positive and one nega-
tive). The MAX1513 also includes an additional linear-reg-
ulator controller and a high-current buffer amplifier. Figure
3 shows the MAX1513/MAX1514 functional diagram.
Main Step-Up Regulator ControllerThe main step-up regulator controller drives an external
N-channel power MOSFET to generate the TFT-LCD
source-driver supply. The controller employs a current-
mode, fixed-frequency PWM architecture to maximize
loop bandwidth and provide fast transient response to
pulsed loads found in source-driver applications. The
multilevel control input SDFRsets the switching fre-
quency to 430kHz, 750kHz, or 1.5MHz. The high
switching frequency allows the use of low-profile induc-
tors and ceramic capacitors to minimize the thickness
of LCD panel designs, while maintaining high efficiency
using a lossless current-sense method. The IC’s built-in
soft-start function reduces the inrush current during
startup.
The controller regulates the output voltage and the
power delivered to the output by modulating the duty
cycle (D) of the power MOSFET in each switching cycle.
The duty cycle of the MOSFET is approximated by:
Figure 4 shows the functional diagram of the step-up
regulator controller. The core of the controller is a multi-
input summing comparator that sums three signals: the
output-voltage error signal with respect to the reference
voltage, the current-sense signal, and the slope-com-
pensation ramp. On the rising edge of the internal
clock, the controller sets a flip-flop, which turns on the
external N-channel MOSFET, applying the input voltage
across the inductor. The current through the inductor
ramps up linearly, storing energy in its magnetic field.
Once the sum of the feedback voltage error, slope
compensation, and current-sense signals trip the multi-VV
MAININ
MAIN ≈ -
Table 1. Component List
Table 2. Component SuppliersESIG N A T IO N DESCRIPTION22µF ± 20% , 6.3V X 5R cer am i c cap aci tor ( 1206)
Tai yo Y ud en JM K316BJ226M L10µF ± 20% , 16V P OS C AP ( D 10) anyo 16AQU 10M 1A, 30V Schottky diode (S-Flat)
Toshiba CRS02
D2, D3200mA, 100V diodes (SOT23)
Fairchild MMBT4148SE2.2µH, 3.3A inductor
Sumida CLS7D16NP-2R2NC3A, 20V N-channel MOSFET (SOT23)
Fairchild FDN339AN3A, 60V PNP bipolar transistor (SOT23)
Fairchild NZT660200mA, 40V NPN bipolar transistor (SOT23)
Fairchild MMBT3904
Q3, Q4200mA, 40V PNP bipolar transistors (SOT23)
Fairchild MMBT3906
SUPPLIERPHONEFAXWEBSITEFairchild Semiconductor408-822-2000408-822-2102www.fairchildsemi.com
Sumida847-545-6700847-545-6720www.sumida.com
Taiyo Yuden800-348-2496847-925-0899www.t-yuden.com
TDK847-803-6100847-390-4405www.component.tdk.com
Toshiba949-455-2000949-859-3963www.toshiba.com
MAX1513/MAX1514
TFT-LCD Power-Supply Controllersinput PWM comparator, the flip-flop is reset and the
MOSFET turns off. Since the inductor current is continu-
ous, a transverse potential develops across the inductor
that turns on the diode (D1). The voltage across the
inductor then becomes the difference between the out-
put voltage and the input voltage. This discharge condi-
tion forces the current through the inductor to ramp
down, transferring the energy stored in the magnetic
field to the output capacitor and the load. The N-channel
MOSFET is kept off for the rest of the clock cycle.
Current Limiting and
Current-Sense Amplifier (CS+, CS-)The internal current-limit circuit resets the PWM flip-flop
and turns off the external power MOSFET whenever the
voltage difference between CS+ and CS- exceeds
125mV (typ). The tolerance on this current limit is±20%. Use the minimum value of the current limit to
select components of the current-sense network.
Lossless Current SenseThe lossless current-sense method uses the DC resis-
tance (DCR) of the inductor as the sense element.
Figure 5 shows a simplified step-up regulator using the
basic lossless current-sensing method. An RC network
is connected in parallel with the step-up inductor (L).
The voltage across the sense capacitor (CS) is the
input to the current-sense amplifier. To prevent the
sense amplifier from seeing large common-mode
switching voltages, the sense capacitor should always
be connected to the nonswitching end of the inductor
(i.e., the input of the step-up regulator).
Lossless current sense can be easily understood using
complex frequency domain analysis. The voltage
across the inductor is given by:
where L is the inductance, RLis the DCR of the induc-
tor, and ILis the inductor current. The voltage across
the sense capacitor is given by:
where RSis the series resistor in the sense network andis the sense capacitor. The above equation can be
rewritten as:
Therefore, the sense capacitor voltage is directly pro-
portional to the inductor current if the time constant of
the RC sense network matches the time constant of the
inductor/DCR. The sense method is equivalent to using
a current-sense resistor that has the same value as the
inductor DCR.sLRCIsLRCRILRCthentheequationbecomesILLLLLSSL / , :+=+sRCVS =+IsLRLLL =+()
CLOCK
RESET DOMINANT
ILIM
COMPARATOR
125mV
LEVEL
SHIFT
SLOPE_COMP
FAULT LOGIC
1.0V
SOFT-START
BLOCK
REF
CS-
CS+
GATE
MAX1513
MAX1514L
INDUCTORCS
+ VS -
VINVMAIN
CS+CS-
GATE
GND
Figure 4. Step-Up Regulator-Controller Functional DiagramFigure 5. Step-Up Regulator Using Lossless Current Sensing