M95128 ,256/128 Kbit Serial SPI Bus EEPROM With High Speed ClockAbsolute Maximum Ratings 21DC AND AC PARAMETERS . 22Table 7. Operating Conditions (M95128 ..
M95128-MN3 ,256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed ClockBlock Diagram . 11INSTRUCTIONS . . 12Table 5. Instruction Set . 12Write Enabl ..
M95128-RDW6TP ,256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed ClockFEATURES SUMMARY■ Compatible with SPI Bus Serial Interface Figure 1. Packages(Positive Clock SPI Mo ..
M95128-RMN6TP ,256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed ClockLogic Diagram . . 5Figure 3. DIP, SO and TSSOP Connections . . 5Table 2. Signal Names ..
M95128-WMN6 ,128 Kbit (16K x8)serial SPI bus EEPROM with high speed clock, operating = 2.5 V to 5.5 VBlock Diagram . 11INSTRUCTIONS . . 12Table 5. Instruction Set . 12Write Enabl ..
M95128-WMN6P ,256Kbit and 128Kbit Serial SPI Bus EEPROM With High Speed ClockFEATURES SUMMARY■ Compatible with SPI Bus Serial Interface Figure 1. Packages(Positive Clock SPI Mo ..
MAX1771CSA ,12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC ControllerMAX177119-0263; Rev 1; 7/9512V or Adjustable, High-Efficiency, Low I , Step-Up DC-DC ControllerQ___ ..
MAX1771CSA ,12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC ControllerApplications__________________Pin ConfigurationPortable Communicators__________Typical Operating Ci ..
MAX1771CSA ,12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC ControllerFeaturesThe MAX1771 step-up switching controller provides ' 90% Efficiency for 30mA to 2A Load Curr ..
MAX1771CSA+ ,12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC ControllerApplications MAX1771MJA -55°C to +125°C 8 CERDIP*** Contact factory for dice specifications.Positiv ..
MAX1771CSA-T ,12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC ControllerMAX177119-0263; Rev 2; 3/0212V or Adjustable, High-Efficiency, Low I , Step-Up DC-DC ControllerQ
MAX1771EPA ,12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC ControllerApplications* Contact factory for dice specifications.Positive LCD-Bias Generators** Contact factor ..
M95128
128KBIT SERIAL SPI BUS EEPROM WITH HIGH SPEED CLOCK
1/39November 2003
M95128128Kbit Serial SPI Bus EEPROM
With High Speed Clock
FEATURES SUMMARY Compatible with SPI Bus Serial Interface
(Positive Clock SPI Modes) Single Supply Voltage: 4.5 to 5.5V for M95128 2.5 to 5.5V for M95128-W 1.8 to 5.5V for M95128-R High speed 5MHz Clock Rate, 10ms Write Time (current
product: identified by process identification
letter S) 10MHz Clock Rate, 5ms Write Time. (This
product is under development. For more in-
formation please contact your nearest ST
sales office)
Details of how to find the process identifica-
tion letter are given on page 37). Status Register Hardware Protection of the Status Register BYTE and PAGE WRITE (up to 64 Bytes) Self-Timed Programming Cycle Adjustable Size Read-Only EEPROM Area Enhanced ESD Protection More than 100,000 Erase/Write Cycles More than 40 Year Data Retention
Figure 1. Packages
M95128
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 3. DIP and SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Serial Data Output (Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
CONNECTING TO THE SPI BUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Figure 4. Bus Master and Memory Devices on the SPI Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Figure 5. SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
OPERATING FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Active Power and Stand-by Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Hold Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Figure 6. Hold Condition Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 2. Status Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Data Protection and Protocol Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10Table 3. Write-Protected Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11Figure 7. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3/39
M95128
INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Table 4. Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 8. Write Enable (WREN) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Figure 9. Write Disable (WRDI) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Figure 10. Read Status Register (RDSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Read Status Register (RDSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 11. Write Status Register (WRSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Table 5. Protection Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 12. Read from Memory Array (READ) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Figure 13. Byte Write (WRITE) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Write to Memory Array (WRITE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Figure 14. Page Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
POWER-UP AND DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Power-up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22Table 7. Operating Conditions (M95128) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 8. Operating Conditions (M95128-V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 9. Operating Conditions (M95128-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 10. Operating Conditions (M95128-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 11. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 15. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 12. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 13. DC Characteristics (M95128, temperature range 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 14. DC Characteristics (M95128, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 15. DC Characteristics (M95128-V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 16. DC Characteristics (M95128-W, temperature range 6). . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 17. DC Characteristics (M95128-W, temperature range 3). . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 18. DC Characteristics (M95128-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
M95128Table 19. AC Characteristics (M95128, temperature range 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 20. AC Characteristics (M95128, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 21. AC Characteristics (M95128-V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 22. AC Characteristics (M95128-W, temperature range 6) . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 23. AC Characteristics (M95128-W, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 24. AC Characteristics (M95128-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 16. Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 17. Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 18. Output Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35Figure 19. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . .35
Table 25. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . .35
Figure 20. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline. . . .36
Table 26. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data
Table 26. PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 27. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 28. How to Identify Current and Forthcoming Products by the Process Identification Letter37
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38Table 29. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
5/39
M95128
SUMMARY DESCRIPTIONThese electrically erasable programmable memo-
ry (EEPROM) devices are accessed by a high
speed SPI-compatible bus. The memory array is
organized as 16384 x 8 bit.
The device is accessed by a simple serial interface
that is SPI-compatible. The bus signals are C, D
and Q, as shown in Table 1 and Figure 2.
The device is selected when Chip Select (S) is tak-
en Low. Communications with the device can be
interrupted using Hold (HOLD).
Figure 2. Logic Diagram
Figure 3. DIP and SO ConnectionsNote:1. See page 35 (onwards) for package dimensions, and how
to identify pin-1.
Table 1. Signal Names
M95128
SIGNAL DESCRIPTIONDuring all operations, VCC must be held stable and
within the specified valid range: VCC(min) to
VCC(max).
All of the input and output signals must be held
High or Low (according to voltages of VIH, VOH, VIL
or VOL, as specified in Table 13 to Table 18).
These signals are described next.
Serial Data Output (Q). This output signal is
used to transfer data serially out of the device.
Data is shifted out on the falling edge of Serial
Clock (C).
Serial Data Input (D). This input signal is used to
transfer data serially into the device. It receives in-
structions, addresses, and the data to be written.
Values are latched on the rising edge of Serial
Clock (C).
Serial Clock (C). This input signal provides the
timing of the serial interface. Instructions, address-
es, or data present at Serial Data Input (D) are
latched on the rising edge of Serial Clock (C). Data
on Serial Data Output (Q) changes after the falling
edge of Serial Clock (C).
Chip Select (S). When this input signal is High,
the device is deselected and Serial Data Output
(Q) is at high impedance. Unless an internal Write
cycle is in progress, the device will be in the Stand-
by mode. Driving Chip Select (S) Low enables the
device, placing it in the active power mode.
After Power-up, a falling edge on Chip Select (S)
is required prior to the start of any instruction.
Hold (HOLD). The Hold (HOLD) signal is used to
pause any serial communications with the device
without deselecting the device.
During the Hold condition, the Serial Data Output
(Q) is high impedance, and Serial Data Input (D)
and Serial Clock (C) are Don’t Care.
To start the Hold condition, the device must be se-
lected, with Chip Select (S) driven Low.
Write Protect (W). The main purpose of this in-
put signal is to freeze the size of the area of mem-
ory that is protected against Write instructions (as
specified by the values in the BP1 and BP0 bits of
the Status Register).
This pin must be driven either High or Low, and
must be stable during all write operations.
7/39
M95128
CONNECTING TO THE SPI BUSThese devices are fully compatible with the SPI
protocol.
All instructions, addresses and input data bytes
are shifted in to the device, most significant bit
first. The Serial Data Input (D) is sampled on the
first rising edge of the Serial Clock (C) after Chip
Select (S) goes Low.
All output data bytes are shifted out of the device,
most significant bit first. The Serial Data Output
(Q) is latched on the first falling edge of the Serial
Clock (C) after the instruction (such as the Read
from Memory Array and Read Status Register in-
structions) have been clocked into the device.
Figure 4 shows three devices, connected to an
MCU, on a SPI bus. Only one device is selected at
a time, so only one device drives the Serial Data
Output (Q) line at a time, all the others being high
impedance.
Figure 4. Bus Master and Memory Devices on the SPI BusNote:1. The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.
M95128
SPI ModesThese devices can be driven by a microcontroller
with its SPI peripheral running in either of the two
following modes: CPOL=0, CPHA=0 CPOL=1, CPHA=1
For these two modes, input data is latched in on
the rising edge of Serial Clock (C), and output data
is available from the falling edge of Serial Clock
(C).
The difference between the two modes, as shown
in Figure 5, is the clock polarity when the bus mas-
ter is in Stand-by mode and not transferring data: C remains at 0 for (CPOL=0, CPHA=0) C remains at 1 for (CPOL=1, CPHA=1)
Figure 5. SPI Modes Supported
9/39
M95128
OPERATING FEATURES
Power-upWhen the power supply is turned on, VCC rises
from VSS to VCC.
During this time, the Chip Select (S) must be al-
lowed to follow the VCC voltage. It must not be al-
lowed to float, but should be connected to VCC via
a suitable pull-up resistor.
As a built in safety feature, Chip Select (S) is edge
sensitive as well as level sensitive. After Power-
up, the device does not become selected until a
falling edge has first been detected on Chip Select
(S). This ensures that Chip Select (S) must have
been High, prior to going Low to start the first op-
eration.
Power On Reset: VCC Lock-Out Write ProtectIn order to prevent data corruption and inadvertent
Write operations during Power-up, a Power On
Reset (POR) circuit is included. The internal reset
is held active until VCC has reached the POR
threshold value, and all operations are disabled –
the device will not respond to any command. In the
same way, when VCC drops from the operating
voltage, below the POR threshold value, all oper-
ations are disabled and the device will not respond
to any command.
A stable and valid VCC must be applied before ap-
plying any logic signal.
Power-downAt Power-down, the device must be deselected.
Chip Select (S) should be allowed to follow the
voltage applied on VCC.
Active Power and Stand-by Power ModesWhen Chip Select (S) is Low, the device is en-
abled, and in the Active Power mode. The device
consumes ICC, as specified in Table 13 to Table
When Chip Select (S) is High, the device is dis-
abled. If an Erase/Write cycle is not currently in
progress, the device then goes in to the Stand-by
Power mode, and the device consumption drops
to ICC1.
Hold ConditionThe Hold (HOLD) signal is used to pause any se-
rial communications with the device without reset-
ting the clocking sequence.
During the Hold condition, the Serial Data Output
(Q) is high impedance, and Serial Data Input (D)
and Serial Clock (C) are Don’t Care.
To enter the Hold condition, the device must be
selected, with Chip Select (S) Low.
Normally, the device is kept selected, for the whole
duration of the Hold condition. Deselecting the de-
vice while it is in the Hold condition, has the effect
of resetting the state of the device, and this mech-
anism can be used if it is required to reset any pro-
cesses that had been in progress.
The Hold condition starts when the Hold (HOLD)
signal is driven Low at the same time as Serial
Clock (C) already being Low (as shown in Figure
6).
The Hold condition ends when the Hold (HOLD)
signal is driven High at the same time as Serial
Clock (C) already being Low.
Figure 6 also shows what happens if the rising and
falling edges are not timed to coincide with Serial
Clock (C) being Low.
M95128
Status RegisterFigure 7 shows the position of the Status Register
in the control logic of the device. The Status Reg-
ister contains a number of status and control bits
that can be read or set (as appropriate) by specific
instructions.
WIP bit. The Write In Progress (WIP) bit indicates
whether the memory is busy with a Write or Write
Status Register cycle.
WEL bit. The Write Enable Latch (WEL) bit indi-
cates the status of the internal Write Enable Latch.
BP1, BP0 bits. The Block Protect (BP1, BP0) bits
are non-volatile. They define the size of the area to
be software protected against Write instructions.
SRWD bit. The Status Register Write Disable
(SRWD) bit is operated in conjunction with the
Write Protect (W) signal. The Status Register
Write Disable (SRWD) bit and Write Protect (W)
signal allow the device to be put in the Hardware
Protected mode. In this mode, the non-volatile bits
of the Status Register (SRWD, BP1, BP0) become
read-only bits.
Table 2. Status Register Format
Data Protection and Protocol ControlNon-volatile memory devices can be used in envi-
ronments that are particularly noisy, and within ap-
plications that could experience problems if
memory bytes are corrupted. Consequently, the
device features the following data protection
mechanisms: Write and Write Status Register instructions are
checked that they consist of a number of clock
pulses that is a multiple of eight, before they are
accepted for execution. All instructions that modify data must be
preceded by a Write Enable (WREN) instruction
to set the Write Enable Latch (WEL) bit . This bit
is returned to its reset state by the following
events: Power-up Write Disable (WRDI) instruction completion Write Status Register (WRSR) instruction
completion Write (WRITE) instruction completion The Block Protect (BP1, BP0) bits allow part of
the memory to be configured as read-only. This
is the Software Protected Mode (SPM). The Write Protect (W) signal allows the Block
Protect (BP1, BP0) bits to be protected. This is
the Hardware Protected Mode (HPM).
For any instruction to be accepted, and executed,
Chip Select (S) must be driven High after the rising
edge of Serial Clock (C) for the last bit of the in-
struction, and before the next rising edge of Serial
Clock (C).
Two points need to be noted in the previous sen-
tence: The ‘last bit of the instruction’ can be the eighth
bit of the instruction code, or the eighth bit of a
data byte, depending on the instruction (except
for Read Status Register (RDSR) and Read
(READ) instructions). The ‘next rising edge of Serial Clock (C)’ might
(or might not) be the next bus transaction for
some other device on the SPI bus.
Table 3. Write-Protected Block Sizeb7 b0
Write In Progress Bit
11/39
M95128
MEMORY ORGANIZATIONThe memory is organized as shown in Figure 7.
M95128
INSTRUCTIONSEach instruction starts with a single-byte code, as
summarized in Table 4.
If an invalid instruction is sent (one not contained
in Table 4), the device automatically deselects it-
self.
Table 4. Instruction Set
Figure 8. Write Enable (WREN) Sequence
Write Enable (WREN)The Write Enable Latch (WEL) bit must be set pri-
or to each WRITE and WRSR instruction. The only
way to do this is to send a Write Enable instruction
to the device.
As shown in Figure 8, to send this instruction to the
device, Chip Select (S) is driven Low, and the bits
of the instruction byte are shifted in, on Serial Data
Input (D). The device then enters a wait state. It
waits for a the device to be deselected, by Chip
Select (S) being driven High.
13/39
M95128
Write Disable (WRDI)One way of resetting the Write Enable Latch
(WEL) bit is to send a Write Disable instruction to
the device.
As shown in Figure 9, to send this instruction to the
device, Chip Select (S) is driven Low, and the bits
of the instruction byte are shifted in, on Serial Data
Input (D).
The device then enters a wait state. It waits for a
the device to be deselected, by Chip Select (S) be-
ing driven High.
The Write Enable Latch (WEL) bit, in fact, be-
comes reset by any of the following events: Power-up WRDI instruction execution WRSR instruction completion WRITE instruction completion.
M95128
Read Status Register (RDSR)The Read Status Register (RDSR) instruction al-
lows the Status Register to be read. The Status
Register may be read at any time, even while a
Write or Write Status Register cycle is in progress.
When one of these cycles is in progress, it is rec-
ommended to check the Write In Progress (WIP)
bit before sending a new instruction to the device.
It is also possible to read the Status Register con-
tinuously, as shown in Figure 10.
The status and control bits of the Status Register
are as follows:
WIP bit. The Write In Progress (WIP) bit indicates
whether the memory is busy with a Write or Write
Status Register cycle. When set to 1, such a cycle
is in progress, when reset to 0 no such cycle is in
progress.
WEL bit. The Write Enable Latch (WEL) bit indi-
cates the status of the internal Write Enable Latch.
When set to 1 the internal Write Enable Latch is
set, when set to 0 the internal Write Enable Latch
is reset and no Write or Write Status Register in-
struction is accepted.
BP1, BP0 bits. The Block Protect (BP1, BP0) bits
are non-volatile. They define the size of the area to
be software protected against Write instructions.
These bits are written with the Write Status Regis-
ter (WRSR) instruction. When one or both of the
Block Protect (BP1, BP0) bits is set to 1, the rele-
vant memory area (as defined in Table 2) be-
comes protected against Write (WRITE)
instructions. The Block Protect (BP1, BP0) bits
can be written provided that the Hardware Protect-
ed mode has not been set.
SRWD bit. The Status Register Write Disable
(SRWD) bit is operated in conjunction with the
Write Protect (W) signal. The Status Register
Write Disable (SRWD) bit and Write Protect (W)
signal allow the device to be put in the Hardware
Protected mode (when the Status Register Write
Disable (SRWD) bit is set to 1, and Write Protect
(W) is driven Low). In this mode, the non-volatile
bits of the Status Register (SRWD, BP1, BP0) be-
come read-only bits and the Write Status Register
(WRSR) instruction is no longer accepted for exe-
cution.
15/39
M95128
Write Status Register (WRSR)The Write Status Register (WRSR) instruction al-
lows new values to be written to the Status Regis-
ter. Before it can be accepted, a Write Enable
(WREN) instruction must previously have been ex-
ecuted. After the Write Enable (WREN) instruction
has been decoded and executed, the device sets
the Write Enable Latch (WEL).
The Write Status Register (WRSR) instruction is
entered by driving Chip Select (S) Low, followed
by the instruction code and the data byte on Serial
Data Input (D).
The instruction sequence is shown in Figure 11.
The Write Status Register (WRSR) instruction has
no effect on b6, b5, b4, b1 and b0 of the Status
Register. b6, b5 and b4 are always read as 0.
Chip Select (S) must be driven High after the rising
edge of Serial Clock (C) that latches in the eighth
bit of the data byte, and before the next rising edge
of Serial Clock (C). Otherwise, the Write Status
Register (WRSR) instruction is not executed. As
soon as Chip Select (S) is driven High, the self-
timed Write Status Register cycle (whose duration
is tW) is initiated. While the Write Status Register
cycle is in progress, the Status Register may still
be read to check the value of the Write In Progress
(WIP) bit. The Write In Progress (WIP) bit is 1 dur-
ing the self-timed Write Status Register cycle, and
is 0 when it is completed. When the cycle is com-
pleted, the Write Enable Latch (WEL) is reset.
The Write Status Register (WRSR) instruction al-
lows the user to change the values of the Block
Protect (BP1, BP0) bits, to define the size of the
area that is to be treated as read-only, as defined
in Table 2.
The Write Status Register (WRSR) instruction also
allows the user to set or reset the Status Register
Write Disable (SRWD) bit in accordance with the
Write Protect (W) signal. The Status Register
Write Disable (SRWD) bit and Write Protect (W)
signal allow the device to be put in the Hardware
Protected Mode (HPM). The Write Status Register
(WRSR) instruction is not executed once the Hard-
ware Protected Mode (HPM) is entered.
The contents of the Status Register Write Disable
(SRWD) and Block Protect (BP1, BP0) bits are fro-
zen at their current values from just before the
start of the execution of Write Status Register
(WRSR) instruction. The new, updated, values
take effect at the moment of completion of the ex-
ecution of Write Status Register (WRSR) instruc-
tion.
M95128
Table 5. Protection ModesNote:1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 5.
The protection features of the device are summa-
rized in Table 3.
When the Status Register Write Disable (SRWD)
bit of the Status Register is 0 (its initial delivery
state), it is possible to write to the Status Register
provided that the Write Enable Latch (WEL) bit has
previously been set by a Write Enable (WREN) in-
struction, regardless of the whether Write Protect
(W) is driven High or Low.
When the Status Register Write Disable (SRWD)
bit of the Status Register is set to 1, two cases
need to be considered, depending on the state of
Write Protect (W): If Write Protect (W) is driven High, it is possible
to write to the Status Register provided that the
Write Enable Latch (WEL) bit has previously
been set by a Write Enable (WREN) instruction. If Write Protect (W) is driven Low, it is not pos-
sible to write to the Status Register even if the
Write Enable Latch (WEL) bit has previously
been set by a Write Enable (WREN) instruction.
(Attempts to write to the Status Register are re-
jected, and are not accepted for execution). As
a consequence, all the data bytes in the memo-
ry area that are software protected (SPM) by the
Block Protect (BP1, BP0) bits of the Status Reg-
ister, are also hardware protected against data
modification.
Regardless of the order of the two events, the
Hardware Protected Mode (HPM) can be entered: by setting the Status Register Write Disable
(SRWD) bit after driving Write Protect (W) Low or by driving Write Protect (W) Low after setting
the Status Register Write Disable (SRWD) bit.
The only way to exit the Hardware Protected Mode
(HPM) once entered is to pull Write Protect (W)
High.
If Write Protect (W) is permanently tied High, the
Hardware Protected Mode (HPM) can never be
activated, and only the Software Protected Mode
(SPM), using the Block Protect (BP1, BP0) bits of
the Status Register, can be used.
17/39
M95128
Figure 12. Read from Memory Array (READ) SequenceNote: The most significant address bits, b15 and b14, are Don’t Care.
Read from Memory Array (READ)As shown in Figure 12, to send this instruction to
the device, Chip Select (S) is first driven Low. The
bits of the instruction byte and address bytes are
then shifted in, on Serial Data Input (D). The ad-
dress is loaded into an internal address register,
and the byte of data at that address is shifted out,
on Serial Data Output (Q).
If Chip Select (S) continues to be driven Low, the
internal address register is automatically incre-
mented, and the byte of data at the new address is
shifted out.
When the highest address is reached, the address
counter rolls over to zero, allowing the Read cycle
to be continued indefinitely. The whole memory
can, therefore, be read with a single READ instruc-
tion.
The Read cycle is terminated by driving Chip Se-
lect (S) High. The rising edge of the Chip Select
(S) signal can occur at any time during the cycle.
The first byte addressed can be any byte within
any page.
The instruction is not accepted, and is not execut-
ed, if a Write cycle is currently in progress.
M95128
Figure 13. Byte Write (WRITE) SequenceNote: The most significant address bits, b15 and b14, are Don’t Care.
Write to Memory Array (WRITE)As shown in Figure 13, to send this instruction to
the device, Chip Select (S) is first driven Low. The
bits of the instruction byte, address byte, and at
least one data byte are then shifted in, on Serial
Data Input (D).
The instruction is terminated by driving Chip Se-
lect (S) High at a byte boundary of the input data.
In the case of Figure 13, this occurs after the
eighth bit of the data byte has been latched in, in-
dicating that the instruction is being used to write
a single byte. The self-timed Write cycle starts,
and continues for a period tWC (as specified in Ta-
ble 19 to Table 24), at the end of which the Write
in Progress (WIP) bit is reset to 0.
If, though, Chip Select (S) continues to be driven
Low, as shown in Figure 14, the next byte of input
data is shifted in, so that more than a single byte,
starting from the given address towards the end of
the same page, can be written in a single internal
Write cycle.
Each time a new data byte is shifted in, the least
significant bits of the internal address counter are
incremented. If the number of data bytes sent to
the device exceeds the page boundary, the inter-
nal address counter rolls over to the beginning of
the page, and the previous data there are overwrit-
ten with the incoming data. (The page size of
these devices is 64 bytes).
The instruction is not accepted, and is not execut-
ed, under the following conditions: if the Write Enable Latch (WEL) bit has not been
set to 1 (by executing a Write Enable instruction
just before) if a Write cycle is already in progress if the device has not been deselected, by Chip
Select (S) being driven High, at a byte boundary
(after the eighth bit, b0, of the last data byte that
has been latched in) if the addressed page is in the region protected
by the Block Protect (BP1 and BP0) bits.
19/39
M95128
Figure 14. Page Write (WRITE) SequenceNote: The most significant address bits, b15 and b14, are Don’t Care.
M95128
POWER-UP AND DELIVERY STATE
Power-up StateAfter Power-up, the device is in the following state: Stand-by mode deselected (after Power-up, a falling edge is re-
quired on Chip Select (S) before any instruc-
tions can be started). not in the Hold Condition the Write Enable Latch (WEL) is reset to 0 Write In Progress (WIP) is reset to 0
the SRWD, BP1 and BP0 bits of the Status Regis-
ter are unchanged from the previous power-down
(they are non-volatile bits).
Initial Delivery StateThe device is delivered with the memory array set
at all 1s (FFh). The Status Register Write Disable
(SRWD) and Block Protect (BP1 and BP0) bits are
initialized to 0.