M48Z35AV-10MH1E ,256 Kbit (32Kb X8) ZEROPOWER SRAMAbsolute Maximum Ratings . . . . . . . 11DC AND AC PARAMETERS . 12Table 6. Operating and ..
M48Z35AV-10PC1 ,256 Kbit (32Kb X8) ZEROPOWER SRAMFEATURES SUMMARY■ INTEGRATED, ULTRA LOW POWER SRAM, Figure 1. 28-pin, CAPHAT™ DIP PackagePOWER-FAIL ..
M48Z35AV-10PC1 ,256 Kbit (32Kb X8) ZEROPOWER SRAMBlock Diagram . . 5OPERATING MODES . . . . . . . 6Table 2. Operating Modes 6RE ..
M48Z35Y-70MH1 ,256 Kbit (32Kbit X 8) ZEROPOWER SRAMM48Z35M48Z35Y®256 Kbit (32 Kbit x8) ZEROPOWER SRAM
M48Z35Y-70MH1F ,256 Kbit (32Kbit X 8) ZEROPOWER SRAMFEATURES SUMMARY . . . . . 1Figure 1. 28-pin CAPHAT™ DIP Package . . . . 1Figure 2. 28- ..
M48Z35Y-70MH1TR ,256 Kbit (32Kbit X 8) ZEROPOWER SRAMAbsolute Maximum Ratings . . . . . . . 11DC AND AC PARAMETERS . 12Table 8. Operating and ..
M62003FP , LOW POWER 2 OUTPUT SYSTEM RESET IC SERIES
M62005L , LOW POWER 2 OUTPUT SYSTEM RESET IC SERIES
M62007FP , LOW POWER 2 OUTPUT SYSTEM RESET IC SERIES
M62007FP , LOW POWER 2 OUTPUT SYSTEM RESET IC SERIES
M62007FP , LOW POWER 2 OUTPUT SYSTEM RESET IC SERIES
M62007FP , LOW POWER 2 OUTPUT SYSTEM RESET IC SERIES
M48Z35AV-10MH1-M48Z35AV-10MH1E-M48Z35AV-10PC1
256 Kbit (32Kb X8) ZEROPOWER SRAM
1/21March 2004
M48Z35AY
M48Z35AV5.0 or 3.3V, 256 Kbit (32 Kbit x8) ZEROPOWER® SRAM
FEATURES SUMMARY INTEGRATED, ULTRA LOW POWER SRAM,
POWER-FAIL CONTROL CIRCUIT, AND
BATTERY READ CYCLE TIME EQUALS WRITE CYCLE
TIME BATTERY LOW FLAG (BOK) AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRITE PROTECTION WRITE PROTECT VOLTAGES:
(VPFD = Power-fail Deselect Voltage) M48Z35AY: 4.2V ≤ VPFD ≤ 4.5V M48Z35AV: 2.7V ≤ VPFD ≤ 3.0V SELF-CONTAINED BATTERY IN THE
CAPHAT™ DIP PACKAGE PACKAGING INCLUDES A 28-LEAD SOIC
AND SNAPHAT® TOP (to be ordered
separately) PIN and FUNCTION COMPATIBLE WITH
JEDEC STANDARD 32K x 8 SRAMs SOIC PACKAGE PROVIDES DIRECT
CONNECTION FOR A SNAPHAT TOP
WHICH CONTAINS THE BATTERY
M48Z35AY, M48Z35AV
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Figure 1. 28-pin, CAPHAT™ DIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Figure 4. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 5. SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Figure 7. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Figure 8. WRITE Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 9. Chip Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Figure 10.BOK Check Routine Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10Figure 11.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Table 6. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 12.AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 7. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 13.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Figure 14.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Outline . . . . . . . . . . . . . .15
Table 11. PMDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Mechanical Data. . . . . . .15
Figure 15.SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Outline . . . . . . . .16
Table 12. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Mechanical Data 16
Figure 16.SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Outline. . . . . . . . . . . . . . .17
3/21
M48Z35AY, M48Z35AVTable 13. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Mechanical Data . . . . . . .17
Figure 17.SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Outline. . . . . . . . . . . . . .18
Table 14. SH – 4-pin SNAPHAT Housing for 120 mAh Battery, Package Mechanical Data. . . . . .18
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Table 15. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 16. SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Table 17. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
M48Z35AY, M48Z35AV
SUMMARY DESCRIPTIONThe M48Z35AY/V ZEROPOWER® RAM is a 32
Kbit x 8, non-volatile static RAM that integrates
power-fail deselect circuitry and battery control
logic on a single die. The monolithic chip is avail-
able in two special packages to provide a highly in-
tegrated battery backed-up memory solution.
The M48Z35AY/V is a non-volatile pin and func-
tion equivalent to any JEDEC standard 32K x8
SRAM. It also easily fits into many ROM, EPROM,
and EEPROM sockets, providing the non-volatility
of PROMs without any requirement for special
WRITE timing or limitations on the number of
WRITEs that can be performed. The 28 pin 600mil
DIP CAPHAT™ houses the M48Z35AY/V silicon
with a long life lithium button cell in a single pack-
age.
The 28-pin, 330mil SOIC provides sockets with
gold plated contacts at both ends for direct con-
nection to a separate SNAPHAT® housing con-
taining the battery. The unique design allows the
SNAPHAT battery package to be mounted on top
of the SOIC package after the completion of the
surface mount process. Insertion of the SNAPHAT
housing after reflow prevents potential battery
damage due to the high temperatures required for
device surface-mounting. The SNAPHAT housing
is keyed to prevent reverse insertion.
The SOIC and battery packages are shipped sep-
arately in plastic anti-static tubes or in Tape & Reel
form.
For the 28-lead SOIC, the battery package (e.g.,
SNAPHAT) part number is “M4Z28-BR00SH1.”
Table 1. Signal Names
5/21
M48Z35AY, M48Z35AV
M48Z35AY, M48Z35AV
OPERATING MODES
The M48Z35AY/V also has its own Power-fail De-
tect circuit. The control circuitry constantly moni-
tors the single power supply for an out of tolerance
condition. When VCC is out of tolerance, the circuit
write protects the SRAM, providing a high degree
of data security in the midst of unpredictable sys-
tem operation brought on by low VCC. As VCC falls
below approximately VSO, the control circuitry con-
nects the battery which maintains data until valid
power returns.
Table 2. Operating Modes
Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage. See Table 10., page 14 for details.
READ Mode
The M48Z35AY/V is in the READ Mode whenever
W (WRITE Enable) is high, E (Chip Enable) is low.
The device architecture allows ripple-through ac-
cess of data from eight of 264,144 locations in the
static storage array. Thus, the unique address
specified by the 15 Address Inputs defines which
one of the 32,768 bytes of data is to be accessed.
Valid data will be available at the Data I/O pins
within Address Access time (tAVQV) after the last
address input signal is stable, providing that the E
and G access times are also satisfied. If the E and
G access times are not met, valid data will be
available after the latter of the Chip Enable Access
time (tELQV) or Output Enable Access time
(tGLQV).
The state of the eight three-state Data I/O signals
is controlled by E and G. If the outputs are activat-
ed before tAVQV, the data lines will be driven to an
indeterminate state until tAVQV. If the Address In-
puts are changed while E and G remain active,
output data will remain valid for Output Data Hold
time (tAXQX) but will go indeterminate until the next
Address Access.
7/21
M48Z35AY, M48Z35AV
Table 3. READ Mode AC Characteristics
Note:1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). CL = 5pF (see Figure 12., page 12).
WRITE Mode
The M48Z35AY/V is in the WRITE Mode whenev-
er W and E are low. The start of a WRITE is refer-
enced from the latter occurring falling edge of W or
E. A WRITE is terminated by the earlier rising
edge of W or E. The addresses must be held valid
throughout the cycle. E or W must return high for
a minimum of tEHAX from Chip Enable or tWHAX
from WRITE Enable prior to the initiation of anoth-
er READ or WRITE cycle. Data-in must be valid tD-
VWH prior to the end of WRITE and remain valid fortWHDX afterward. G should be kept high during
WRITE cycles to avoid bus contention; although, if
the output bus has been activated by a low on E
and G, a low on W will disable the outputs tWLQZ
after W falls.
M48Z35AY, M48Z35AV
9/21
M48Z35AY, M48Z35AV
Data Retention Mode
With valid VCC applied, the M48Z35AY/V operates
as a conventional BYTEWIDE™ static RAM.
Should the supply voltage decay, the RAM will au-
tomatically power-fail deselect, write protecting it-
self when VCC falls within the VPFD (max), VPFD
(min) window. All outputs become high imped-
ance, and all inputs are treated as “Don't care.”
Note: A power failure during a WRITE cycle may
corrupt data at the currently addressed location,
but does not jeopardize the rest of the RAM's con-
tent. At voltages below VPFD(min), the user can be
assured the memory will be in a write protected
state, provided the VCC fall time is not less than tF.
The M48Z35AY/V may respond to transient noise
spikes on VCC that reach into the deselect window
during the time the device is sampling VCC. There-
fore, decoupling of the power supply lines is rec-
ommended.
When VCC drops below VSO, the control circuit
switches power to the internal battery which pre-
serves data. The internal button cell will maintain
data in the M48Z35AY/V for an accumulated peri-
od of at least 10 years (at 25°C) when VCC is less
than VSO.
As system power returns and VCC rises above
VSO, the battery is disconnected, and the power
supply is switched to external VCC. Write protec-
tion continues until VCC reaches VPFD(min) plus
tREC(min). Normal RAM operation can resume
tREC after VCC exceeds VPFD(max).
Also, as VCC rises, the battery voltage is checked.
If the voltage is less than approximately 2.5V, an
internal Battery Not OK (BOK) flag will be set. The
BOK flag can be checked after power up. If the
BOK flag is set, the first WRITE attempted will be
blocked. The flag is automatically cleared after the
first WRITE, and normal RAM operation resumes.
Figure 10 illustrates how a BOK check routine
could be structured.
For more information on Battery Storage Life refer
to the Application Note AN1012.
M48Z35AY, M48Z35AV
VCC Noise And Negative Going Transients
ICC transients, including those produced by output
switching, can produce voltage fluctuations, re-
sulting in spikes on the VCC bus. These transients
can be reduced if capacitors are used to store en-
ergy which stabilizes the VCC bus. The energy
stored in the bypass capacitors will be released as
low going spikes are generated or energy will be
absorbed when overshoots occur. A ceramic by-
pass capacitor value of 0.1µF (see Figure 11) is
recommended in order to provide the needed fil-
tering.
In addition to transients that are caused by normal
SRAM operation, power cycling can generate neg-
ative voltage spikes on VCC that drive it to values
below VSS by as much as one volt. These negative
spikes can cause data corruption in the SRAM
while in battery backup mode. To protect from
these voltage spikes, ST recommends connecting
a schottky diode from VCC to VSS (cathode con-
nected to VCC, anode to VSS). (Schottky diode
1N5817 is recommended for through hole and
MBRS120T3 is recommended for surface mount).
11/21
M48Z35AY, M48Z35AV
MAXIMUM RATING
Stressing the device above the rating listed in the
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicat-
ed in the Operating sections of this specification is
not implied. Exposure to Absolute Maximum Rat-
ing conditions for extended periods may affect de-
vice reliability. Refer also to the
STMicroelectronics SURE Program and other rel-
evant quality documents.
Table 5. Absolute Maximum Ratings
Note:1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer
than 30 seconds). For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for
between 90 to 150 seconds). For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C
for greater than 30 seconds).
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.