M48T129Y-70PM1 ,3.3V-5V 1 MB (128K X 8) TIMEKEEPER SRAMBlock Diagram . . 5Figure 5. Hardware Hookup for Equivalent Surface-mount (SMT) Solution . ..
M48T18-100MH1 ,64 Kbit 8Kb x 8 TIMEKEEPER SRAMBlock Diagram . . 5OPERATION MODES . . . . . . . 6Table 2. Operating Modes 6RE ..
M48T18-100MH1 ,64 Kbit 8Kb x 8 TIMEKEEPER SRAMAbsolute Maximum Ratings . . . . . . . 17DC AND AC PARAMETERS . 18Table 7. Operating and ..
M48T18-100MH1TR ,CMOS 8K x 8 timekeeping SRAM, 100nsLogic Diagram Table 1. Signal NamesA0-A12 Address InputsVCCDQ0-DQ7 Data Inputs / Outputs13 8INT Pow ..
M48T18-100PC1 ,64K (8K X 8) TIMEKEEPER SRAMFEATURES SUMMARY■ INTEGRATED ULTRA LOW POWER SRAM, Figure 1. 28-pin PCDIP, CAPHAT™ PackageREAL TIME ..
M48T18-150PC1 ,64K (8K X 8) TIMEKEEPER SRAMFEATURES SUMMARY■ INTEGRATED ULTRA LOW POWER SRAM, Figure 1. 28-pin PCDIP, CAPHAT™ PackageREAL TIME ..
M61250BFP , NTSC 1 chip TV signal processor
M61250BFP , NTSC 1 chip TV signal processor
M61251AFP , Single-chip NTSC TV signal processor
M61251AFP , Single-chip NTSC TV signal processor
M61283FP , NTSC TV Signal Processor
M61283FP , NTSC TV Signal Processor
M48T129V-85PM1-M48T129Y-70PM1
3.3V-5V 1 MB (128K X 8) TIMEKEEPER SRAM
1/30February 2005
M48T129Y
M48T129V5.0 or 3.3V, 1 Mbit (128 Kbit x 8) TIMEKEEPER® SRAM
FEATURES SUMMARY INTEGRATED, ULTRA LOW POWER SRAM,
REAL TIME CLOCK, POWER-FAIL
CONTROL CIRCUIT, BATTERY, AND
CRYSTAL YEAR 2000 COMPLIANT BCD CODED CENTURY, YEAR, MONTH,
DAY, DATE, HOURS, MINUTES, AND
SECONDS BATTERY LOW WARNING FLAG AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRITE PROTECTION TWO WRITE PROTECT VOLTAGES:
(VPFD = Power-fail Deselect Voltage) M48T129Y: VCC = 4.5 to 5.5V
4.2V ≤ VPFD ≤ 4.5V M48T129V: VCC = 3.0 to 3.6V
2.7V ≤ VPFD ≤ 3.0V CONVENTIONAL SRAM OPERATION;
UNLIMITED WRITE CYCLES SOFTWARE CONTROLLED CLOCK
CALIBRATION FOR HIGH ACCURACY
APPLICATIONS 10 YEARS OF DATA RETENTION AND
CLOCK OPERATION IN THE ABSENCE OF
POWER SELF CONTAINED BATTERY AND
CRYSTAL IN DIP PACKAGE MICROPROCESSOR POWER-ON RESET
(Valid even during battery back-up mode) PROGRAMMABLE ALARM OUTPUT
ACTIVE IN BATTERY BACK-UP MODE SOIC PACKAGE PROVIDES DIRECT
CONNECTION FOR A SNAPHAT TOP
WHICH CONTAINS THE BATTERY AND
CRYSTAL SNAPHAT HOUSING (BATTERY/CRYSTAL)
IS REPLACEABLE EQUIVALENT SURFACE-MOUNT (SMT)
SOLUTION REQUIRES A 44-PIN M48T201Y/
V AND A STAND-ALONE 128K x8 LPSRAM
(SNAPHAT® Top to be ordered separately)
M48T129Y, M48T129V
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Figure 1. 32-pin Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Figure 3. 32-pin Module Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 5. Hardware Hookup for Equivalent Surface-mount (SMT) Solution. . . . . . . . . . . . . . . . . . .6
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms . . . . . . . . . . . . .8
Figure 7. Address Controlled, READ Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10Figure 8. WRITE Enable Controlled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 9. Chip Enable Controlled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
TIMEKEEPER® Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Stopping and Starting the Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Table 5. TIMEKEEPER® Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Figure 10.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 11.Calibration Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Setting the Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Figure 12.Alarm Interrupt Reset Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 6. Alarm Repeat Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 13.Back-up Mode Alarm Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Battery Low Warning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Figure 14.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3/30
M48T129Y, M48T129VTable 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Table 8. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 15.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 9. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 10. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 16.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 11. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 12. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24Figure 17.PMDIP32 – 32-pin Plastic DIP Module, Package Outline . . . . . . . . . . . . . . . . . . . . . . . .24
Table 13. PMDIP32 – 32-pin Plastic DIP Module, Package Mechanical Data . . . . . . . . . . . . . . . .24
Figure 18.SOH44 – 44-lead Plastic Small Outline, 4-socket battery, SNAPHAT, Package Outline 25
Table 14. SOH44 – 44-lead Plastic Small Outline, 4-socket battery, SNAPHAT, Package Data . .25
Figure 19.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . .26
Table 15. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . .26
Figure 20.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . .27
Table 16. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . .27
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28Table 17. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 18. SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29Table 19. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
M48T129Y, M48T129V
DESCRIPTIONThe M48T129Y/V TIMEKEEPER® RAM is a
128 Kb x 8 non-volatile static RAM and real-time
clock with programmable alarms and a watchdog
timer. The special DIP package provides a fully in-
tegrated battery back-up memory and real-time
clock solution. The M48T129Y/V directly replaces
industry standard 128 Kb x 8 SRAM. It also pro-
vides the non-volatility of Flash without any re-
quirement for special WRITE timing or limitations
on the number of WRITEs that can be performed.
For surface-mount environments ST provides an
equivalent SMT solution consisting of a 44-pin,
330mil SOIC TIMEKEEPER SUPERVISOR
(M48T201V/Y) and a 32-pin, (TSOP, 8 x 20mm)
1Mb LPSRAM.
The 44-pin, 330mil SOIC provides sockets with
gold plated contacts at both ends for direct con-
nection to a separate SNAPHAT® housing con-
taining the battery.
The unique design allows the SNAPHAT battery
package to be mounted on top of the SOIC pack-
age after the completion of the surface-mount pro-
cess. Insertion of the SNAPHAT housing after
reflow prevents potential battery damage due to
the high temperatures required for device surface-
mounting. The SNAPHAT housing is keyed to pre-
vent reverse insertion.
The SNAPHAT battery package is shipped sepa-
rately in plastic anti-static tubes or in Tape & Reel
form. The part number is “M4Txx-BR12SH1” (see
Table 18., page 28).
The 32-pin, 600mil DIP Hybrid houses a controller
chip, SRAM, quartz crystal, and a long life lithium
button cell in a single package.
Table 1. Signal Names
5/30
M48T129Y, M48T129V
M48T129Y, M48T129V
Figure 5. Hardware Hookup for Equivalent Surface-mount (SMT) Solution
Notes:For pin connections, see individual data sheet for M48T201Y/V .
The chip enable access time of the external SRAM will be the combination of the chip enable access for the SRAM itself, plus the chip
enable propagation delay tEPD for the M48T201Y/V. For 5V, M48T129Y (M48T201Y + 5V 1Mb LPSRAM). For 3.3V, M48T129V (M48T201V + 3V 1Mb LPSRAM). SNAPHAT Top ordered separately.
7/30
M48T129Y, M48T129V
OPERATING MODES
Figure 4., page 5 illustrates the static memory ar-
ray and the quartz controlled clock oscillator. The
clock locations contain the century, year, month,
date, day, hour, minute, and second in 24 hour
BCD format. Corrections for 28, 29 (leap year -
valid until 2100), 30, and 31 day months are made
automatically. The nine clock bytes (1FFFFh-
1FFF9h and 1FFF1h) are not the actual clock
counters, they are memory locations consisting of
BiPORT™ READ/WRITE memory cells within the
static RAM array.
The M48T129Y/V includes a clock control circuit
which updates the clock bytes with current infor-
mation once per second. The information can be
accessed by the user in the same manner as any
other location in the static memory array. Byte
1FFF8h is the clock control register. This byte con-
trols user access to the clock information and also
stores the clock calibration setting.
Byte 1FFF7h contains the watchdog timer setting.
The watchdog timer can generate either a reset or
an interrupt, depending on the state of the Watch-
dog Steering Bit (WDS). Bytes 1FFF6h-1FFF2h
include bits that, when programmed, provide for
clock alarm functionality. Alarms are activated
when the register content matches the month,
date, hours, minutes, and seconds of the clock
registers. Byte 1FFF1h contains century informa-
tion. Byte 1FFF0h contains additional flag informa-
tion pertaining to the watchdog timer, the alarm
condition and the battery status. The M48T129Y/V
also has its own Power-Fail Detect circuit. This
control circuitry constantly monitors the supply
voltage for an out of tolerance condition. When
VCC is out of tolerance, the circuit write protects
the TIMEKEEPER® register data and external
SRAM, providing data security in the midst of un-
predictable system operation. As VCC falls below
Battery Back-up Switchover Voltage (VSO), the
control circuitry automatically switches to the bat-
tery, maintaining data and clock operation until
valid power is restored.
Table 2. Operating Modes
Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage. See Table 12., page 23 for details.
M48T129Y, M48T129V
READ Mode
The M48T129Y/V is in the READ Mode whenever
W (WRITE Enable) is high and E (Chip Enable) is
low. The unique address specified by the 17 Ad-
dress Inputs defines which one of the 131,072
bytes of data is to be accessed. Valid data will be
available at the Data I/O pins within tAVQV (Ad-
dress Access Time) after the last address input
signal is stable, providing the E and G access
times are also satisfied. If the E and G access
times are not met, valid data will be available after
the latter of the Chip Enable Access Times (tELQV)
or Output Enable Access Time (tGLQV).
The state of the eight three-state Data I/O signals
is controlled by E and G. If the outputs are activat-
ed before tAVQV, the data lines will be driven to an
indeterminate state until tAVQV. If the Address In-
puts are changed while E and G remain active,
output data will remain valid for tAXQX (Output
Data Hold Time) but will go indeterminate until the
next Address Access.
9/30
M48T129Y, M48T129V
Table 3. READ Mode AC Characteristics
Note:1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). CL = 5pF.
M48T129Y, M48T129V
WRITE Mode
The M48T129Y/V is in the WRITE Mode whenever
W (WRITE Enable) and E (Chip Enable) are low
state after the address inputs are stable.
The start of a WRITE is referenced from the latter
occurring falling edge of W or E. A WRITE is termi-
nated by the earlier rising edge of W or E. The ad-
dresses must be held valid throughout the cycle. E
or W must return high for a minimum of tEHAX from
Chip Enable or tWHAX from WRITE Enable prior to
the initiation of another READ or WRITE cycle.
Data-in must be valid tDVWH prior to the end of
WRITE and remain valid for tWHDX afterward. G
should be kept high during WRITE cycles to avoid
bus contention; although, if the output bus has
been activated by a low on E and G a low on W will
disable the outputs tWLQZ after W falls.
11/30
M48T129Y, M48T129V
Table 4. WRITE Mode AC Characteristics
Note:1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). CL = 5pF. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.
M48T129Y, M48T129V
Data Retention Mode
With valid VCC applied, the M48T129Y/V operates
as a conventional BYTEWIDE™ static RAM.
Should the supply voltage decay, the RAM will au-
tomatically deselect, write protecting itself when
VCC falls between VPFD (max), VPFD (min) win-
dow. All outputs become high impedance and all
inputs are treated as “Don't care.”
Note: A power failure during a WRITE cycle may
corrupt data at the current addressed location, but
does not jeopardize the rest of the RAM's content.
At voltages below VPFD (min), the memory will be
in a write protected state, provided the VCC fall
time is not less than tF. The M48T129Y/V may re-
spond to transient noise spikes on VCC that cross
into the deselect window during the time the de-
vice is sampling VCC. Therefore, decoupling of the
power supply lines is recommended.
When VCC drops below VSO, the control circuit
switches power to the internal battery, preserving
data and powering the clock. The internal energy
source will maintain data in the M48T129Y/V for
an accumulated period of at least 10 years at room
temperature. As system power rises above VSO,
the battery is disconnected, and the power supply
is switched to external VCC. Deselect continues for
tREC after VCC reaches VPFD (max). For a further
more detailed review of lifetime calculations,
please see Application Note AN1012.
13/30
M48T129Y, M48T129V
CLOCK OPERATIONS
TIMEKEEPER® Registers
The M48T129Y/V offers 16 internal registers
which contain TIMEKEEPER, Alarm, Watchdog,
Interrupt, Flag, and Control data. These registers
are memory locations which contain external (user
accessible) and internal copies of the data (usually
referred to as BiPORT TIMEKEEPER cells). The
external copies are independent of internal func-
tions except that they are updated periodically by
the simultaneous transfer of the incremented inter-
nal copy. TIMEKEEPER and Alarm Registers
store data in BCD.
Reading the Clock
Updates to the TIMEKEEPER® registers should
be halted before clock data is read to prevent
reading data in transition. The BiPORT™ TIME-
KEEPER cells in the RAM array are only data reg-
isters and not the actual clock counters, so
updating the registers can be halted without dis-
turbing the clock itself.
Updating is halted when a '1' is written to the
READ Bit, D6 in the Control Register (1FFF8h). As
long as a '1' remains in that position, updating is
halted. After a halt is issued, the registers reflect
the count; that is, the day, date, and time that were
current at the moment the halt command was is-
sued. All of the TIMEKEEPER registers are updat-
ed simultaneously. A halt will not interrupt an
update in progress. Updating occurs 1 second af-
ter the READ Bit is reset to a '0.'
Setting the Clock
Bit D7 of the Control Register (1FFF8h) is the
WRITE Bit. Setting the WRITE Bit to a '1,' like the
READ Bit, halts updates to the TIMEKEEPER reg-
isters. The user can then load them with the cor-
rect day, date, and time data in 24 hour BCD
format (see Table 5., page 14).
Resetting the WRITE Bit to a '0' then transfers the
values of all time registers (1FFFFh-1FFF9h,
1FFF1h) to the actual TIMEKEEPER counters and
allows normal operation to resume. After the
WRITE Bit is reset, the next clock update will occur
approximately one second later.
Note: Upon power-up following a power failure,
both the WRITE Bit and the READ Bit will be reset
to '0.'
Stopping and Starting the Oscillator
The oscillator may be stopped at any time. If the
device is going to spend a significant amount of
time on the shelf, the oscillator can be turned off to
minimize current drain on the battery. The STOP
Bit is located at Bit D7 within 1FFF9h. Setting it to
a '1' stops the oscillator. When reset to a '0', the
M48T129Y/V oscillator starts within one second.
Note: It is not necessary to set the WRITE Bit
when setting or resetting the FREQUENCY TEST
Bit (FT) or the STOP Bit (ST).
M48T129Y, M48T129V
Table 5. TIMEKEEPER® Register Map
Keys: S = SIGN Bit
FT = FREQUENCY TEST Bit
R = READ Bit
W = WRITE Bit
ST = STOP Bit
0 = Must be set to '0'
Y = '1' or '0‘
BL = Battery Low (Read only)
AF = Alarm Flag (Read only)
WDS = Watchdog Steering Bit
BMB0-BMB4 = Watchdog Multiplier Bits
RB0-RB1 = Watchdog Resolution Bits
AFE = Alarm Flag Enable
ABE = Alarm in Battery Back-up Mode Enable
RPT1-RPT5 = Alarm Repeat Mode Bits
WDF = Watchdog Flag (Read only)
15/30
M48T129Y, M48T129V
Calibrating the Clock
The M48T129Y/V is driven by a quartz controlled
oscillator with a nominal frequency of 32,768Hz.
The devices are factory calibrated at 25°C and
tested for accuracy. Clock accuracy will not ex-
ceed 35 ppm (parts per million) oscillator frequen-
cy error at 25°C, which equates to about ±1.53
minutes per month (see Figure 10., page 16).
When the Calibration circuit is properly employed,
accuracy improves to better than +1/–2 ppm at
25°C. The oscillation rate of crystals changes with
temperature. The M48T129Y/V design employs
periodic counter correction. The calibration circuit
adds or subtracts counts from the oscillator divider
circuit at the divide by 256 stage, as shown in Fig-
ure 11., page 16.
The number of times pulses are blanked (subtract-
ed, negative calibration) or split (added, positive
calibration) depends upon the value loaded into
the five Calibration bits found in the Control Regis-
ter. Adding counts speeds the clock up, subtract-
ing counts slows the clock down. The Calibration
bits occupy the five lower order bits (D4-D0) in the
Control Register 1FFF8h. These bits can be set to
represent any value between 0 and 31 in binary
form. Bit D5 is a Sign Bit; '1' indicates positive cal-
ibration, '0' indicates negative calibration. Calibra-
tion occurs within a 64 minute cycle. The first 62
minutes in the cycle may, once per minute, have
one second either shortened by 128 or lengthened
by 256 oscillator cycles.
If a binary '1' is loaded into the register, only the
first 2 minutes in the 64 minute cycle will be modi-
fied; if a binary 6 is loaded, the first 12 will be af-
fected, and so on. Therefore, each calibration step
has the effect of adding 512 or subtracting 256 os-
cillator cycles for every 125, 829, 120 actual oscil-
lator cycles, that is +4.068 or –2.034 ppm of
adjustment per calibration step in the calibration
register. Assuming that the oscillator is running at
exactly 32,768Hz, each of the 31 increments in the
Calibration byte would represent +10.7 or –5.35
seconds per month which corresponds to a total
range of +5.5 or –2.75 minutes per month. Figure
11., page 16 illustrates a TIMEKEEPER® calibra-
tion waveform.
Two methods are available for ascertaining how
much calibration a given M48T129Y/V may re-
quire. The first involves setting the clock, letting it
run for a month and comparing it to a known accu-
rate reference and recording deviation over a fixed
period of time.
Calibration values, including the number of sec-
onds lost or gained in a given period, can be found
in the application note “AN934, TIMEKEEPER
CALIBRATION.”
This allows the designer to give the end user the
ability to calibrate the clock as the environment re-
quires, even if the final product is packaged in a
non-user serviceable enclosure. The designer
could provide a simple utility that accesses the
Calibration byte.
The second approach is better suited to a manu-
facturing environment, and involves the use of the
IRQ/FT pin. The pin will toggle at 512Hz, when the
Stop Bit (ST, D7 of 1FFF9h) is '0,' the Frequency
Test Bit (FT, D6 of 1FFFCh) is '1,' the Alarm Flag
Enable Bit (AFE, D7 of 1FFF6h) is '0,' and the
Watchdog Steering Bit (WDS, D7 of 1FFF7h) is '1'
or the Watchdog Register (1FFF7h = 0) is reset.
Note: A 4 second settling time must be allowed
before reading the 512Hz output.
Any deviation from 512Hz indicates the degree
and direction of oscillator frequency shift at the test
temperature. For example, a reading of
512.010124Hz would indicate a +20 ppm oscillator
frequency error, requiring a –10 (WR001010) to be
loaded into the Calibration Byte for correction.
Note that setting or changing the Calibration Byte
does not affect the Frequency test output frequen-
cy.
The IRQ/FT pin is an open drain output which re-
quires a pull-up resistor for proper operation. A
500-10kΩ resistor is recommended in order to
control the rise time. The FT Bit is cleared on pow-
er-up.