M48T02-70PC1 ,16 KBIT (2KB X8) TIMEKEEPER SRAMM48T02M48T12® 5.0V, 16 Kbit (2Kb x8) TIMEKEEPER SRAM
M48T08-100PC1 ,64K (8K X 8) TIMEKEEPER SRAMBlock Diagram . . 5OPERATION MODES . . . . . . . 6Table 2. Operating Modes 6RE ..
M48T08-150PC1 ,64K (8K X 8) TIMEKEEPER SRAMLogic Diagram Table 1. Signal NamesA0-A12 Address InputsVCCDQ0-DQ7 Data Inputs / Outputs13 8INT Pow ..
M48T08Y-10MH1 ,64K (8K X 8) TIMEKEEPER SRAMLogic Diagram Table 1. Signal NamesA0-A12 Address InputsVCCDQ0-DQ7 Data Inputs / Outputs13 8INT Pow ..
M48T08Y-10MH1E ,64K (8K X 8) TIMEKEEPER SRAMM48T08M48T08Y, M48T18® 5V, 64 Kbit (8 Kb x8) TIMEKEEPER SRAM
M48T12-150PC1 ,16 KBIT (2KB X8) TIMEKEEPER SRAMLogic Diagram . . 4Table 1. Signal Names . . 4Figure 3. DIP Connections 4Figur ..
M61111FP , Coil-less VIF/SIF
M61201SP , TV SIGNAL PROCESSOR FOR MULTI SYSTEM
M61206FP , NTSC TV SIGNAL PROCESSOR
M61206FP , NTSC TV SIGNAL PROCESSOR
M61206FP , NTSC TV SIGNAL PROCESSOR
M61250BFP , NTSC 1 chip TV signal processor
M48T02150PC1-M48T02-150PC1-M48T02-200PC1-M48T02-70PC1-M48T12-150PC1-M48T12-200PC1-M48T12-70PC1
16 KBIT (2KB X8) TIMEKEEPER SRAM
1/21April 2004
M48T02
M48T125.0V, 16 Kbit (2Kb x8) TIMEKEEPER® SRAM
FEATURES SUMMARY INTEGRATED, ULTRA LOW POWER SRAM,
REAL TIME CLOCK, AND POWER-FAIL
CONTROL CIRCUIT BYTEWIDE™ RAM-LIKE CLOCK ACCESS BCD CODED YEAR, MONTH, DAY, DATE,
HOURS, MINUTES, AND SECONDS TYPICAL CLOCK ACCURACY OF ±1
MINUTE A MONTH, AT 25°C SOFTWARE CONTROLLED CLOCK
CALIBRATION FOR HIGH ACCURACY
APPLICATIONS AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRITE PROTECTION WRITE PROTECT VOLTAGES
(VPFD = Power-fail Deselect Voltage): M48T02: VCC = 4.75 to 5.5V
4.5V ≤ VPFD ≤ 4.75V M48T12: VCC = 4.5 to 5.5V
4.2V ≤ VPFD ≤ 4.5V SELF-CONTAINED BATTERY AND
CRYSTAL IN THE CAPHAT™ DIP
PACKAGE PIN and FUNCTION COMPATIBLE WITH
JEDEC STANDARD 2K x8 SRAMs
M48T02, M48T12
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Figure 5. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Figure 6. WRITE Enable Controlled, WRITE AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 7. Chip Enable Controlled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10Figure 8. Checking the BOK Flag Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Figure 9. Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 10.Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Figure 11.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Table 6. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Table 7. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 12.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 8. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 13.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 10. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 11.
Power Down/Up Trip Points DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3/21
M48T02, M48T12
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 14.PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Outline . . . . . . . . . . . . . . . .18
Table 12. PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Mechanical Data. . . . . . . . .18
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 13. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 14. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
M48T02, M48T12
SUMMARY DESCRIPTION
The M48T02/12 TIMEKEEPER® RAM is a 2Kb x 8
non-volatile static RAM and real time clock which
is pin and functional compatible with the DS1642.
A special 24-pin, 600mil DIP CAPHAT™ package
houses the M48T02/12 silicon with a quartz crystal
and a long life lithium button cell to form a highly
integrated battery backed-up memory and real
time clock solution.
The M48T02/12 button cell has sufficient capacity
and storage life to maintain data and clock func-
tionality for an accumulated time period of at least
10 years in the absence of power over the operat-
ing temperature range.
The M48T02/12 is a non-volatile pin and function
equivalent to any JEDEC standard 2Kb x 8 SRAM.
It also easily fits into many ROM, EPROM, and
EEPROM sockets, providing the non-volatility of
PROMs without any requirement for special
WRITE timing or limitations on the number of
WRITEs that can be performed.
Table 1. Signal Names
5/21
M48T02, M48T12
M48T02, M48T12
OPERATION MODES
As Figure 4., page 5 shows, the static memory ar-
ray and the quartz controlled clock oscillator of the
M48T02/12 are integrated on one silicon chip. The
two circuits are interconnected at the upper eight
memory locations to provide user accessible
BYTEWIDE™ clock information in the bytes with
addresses 7F8h-7FFh. The clock locations con-
tain the year, month, date, day, hour, minute, and
second in 24 hour BCD format. Corrections for 28,
29 (leap year - valid until 2100), 30, and 31 day
months are made automatically.
Byte 7F8h is the clock control register. This byte
controls user access to the clock information and
also stores the clock calibration setting.
The eight clock bytes are not the actual clock
counters themselves; they are memory locations
consisting of BiPORT™ READ/WRITE memory
cells. The M48T02/12 includes a clock control cir-
cuit which updates the clock bytes with current in-
formation once per second. The information can
be accessed by the user in the same manner as
any other location in the static memory array.
The M48T02/12 also has its own Power-fail Detect
circuit. The control circuitry constantly monitors
the single 5V supply for an out of tolerance condi-
tion. When VCC is out of tolerance, the circuit write
protects the SRAM, providing a high degree of
data security in the midst of unpredictable system
operation brought on by low VCC. As VCC falls be-
low approximately 3V, the control circuitry con-
nects the battery which maintains data and clock
operation until valid power returns.
Table 2. Operating Modes
Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage. See Table 11., page 17 for details.
7/21
M48T02, M48T12
READ Mode
The M48T02/12 is in the READ Mode whenever W
(WRITE Enable) is high and E (Chip Enable) is
low. The device architecture allows ripple-through
access of data from eight of 16,384 locations in the
static storage array. Thus, the unique address
specified by the 11 Address Inputs defines which
one of the 2,048 bytes of data is to be accessed.
Valid data will be available at the Data I/O pins
within Address Access time (tAVQV) after the last
address input signal is stable, providing that the E
and G access times are also satisfied. If the E and
G access times are not met, valid data will be
available after the latter of the Chip Enable Access
time (tELQV) or Output Enable Access time
(tGLQV).
The state of the eight three-state Data I/O signals
is controlled by E and G. If the outputs are activat-
ed before tAVQV, the data lines will be driven to an
indeterminate state until tAVQV. If the Address In-
puts are changed while E and G remain active,
output data will remain valid for Output Data Hold
time (tAXQX) but will go indeterminate until the next
Address Access.
Figure 5. READ Mode AC Waveforms
Note: WRITE Enable (W) = High.
Table 3. READ Mode AC Characteristics
Note:1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
M48T02, M48T12
WRITE Mode
The M48T02/12 is in the WRITE Mode whenever
W and E are active. The start of a WRITE is refer-
enced from the latter occurring falling edge of W or
E. A WRITE is terminated by the earlier rising
edge of W or E. The addresses must be held valid
throughout the cycle. E or W must return high for
a minimum of tEHAX from Chip Enable or tWHAX
from WRITE Enable prior to the initiation of anoth-
er READ or WRITE cycle. Data-in must be valid tD-
VWH prior to the end of WRITE and remain valid fortWHDX afterward. G should be kept high during
WRITE cycles to avoid bus contention; although, if
the output bus has been activated by a low on E
and G, a low on W will disable the outputs tWLQZ
after W falls.
Figure 6. WRITE Enable Controlled, WRITE AC Waveform
Figure 7. Chip Enable Controlled, WRITE AC Waveforms
9/21
M48T02, M48T12
Table 4. WRITE Mode AC Characteristics
Note:1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
M48T02, M48T12
Data Retention Mode
With valid VCC applied, the M48T02/12 operates
as a conventional BYTEWIDE™ static RAM.
Should the supply voltage decay, the RAM will au-
tomatically power-fail deselect, write protecting it-
self when VCC falls within the VPFD (max), VPFD
(min) window. All outputs become high imped-
ance, and all inputs are treated as “don't care.”
Note: A power failure during a WRITE cycle may
corrupt data at the currently addressed location,
but does not jeopardize the rest of the RAM's con-
tent. At voltages below VPFD (min), the user can be
assured the memory will be in a write protected
state, provided the VCC fall time is not less than tF.
The M48T02/12 may respond to transient noise
spikes on VCC that reach into the deselect window
during the time the device is sampling VCC. There-
fore, decoupling of the power supply lines is rec-
ommended.
The power switching circuit connects external VCC
to the RAM and disconnects the battery when VCC
rises above VSO. As VCC rises, the battery voltage
is checked. If the voltage is too low, an internal
Battery Not OK (BOK) flag will be set. The BOK
flag can be checked after power up. If the BOK flag
is set, the first WRITE attempted will be blocked.
The flag is automatically cleared after the first
WRITE, and normal RAM operation resumes. Fig-
ure 8 illustrates how a BOK check routine could be
structured.
For more information on a Battery Storage Life re-
fer to the Application Note AN1012.
11/21
M48T02, M48T12
CLOCK OPERATIONS
Reading the Clock
Updates to the TIMEKEEPER® registers should
be halted before clock data is read to prevent
reading data in transition. The BiPORT™ TIME-
KEEPER cells in the RAM array are only data reg-
isters and not the actual clock counters, so
updating the registers can be halted without dis-
turbing the clock itself.
Updating is halted when a '1' is written to the
READ Bit, the seventh bit in the control register.
As long as a '1' remains in that position, updating
is halted. After a halt is issued, the registers reflect
the count; that is, the day, date, and the time that
were current at the moment the halt command was
issued.
All of the TIMEKEEPER registers are updated si-
multaneously. A halt will not interrupt an update in
progress. Updating is within a second after the bit
is reset to a '0.'
Setting the Clock
The eighth bit of the control register is the WRITE
Bit. Setting the WRITE Bit to a '1,' like the READ
Bit, halts updates to the TIMEKEEPER registers.
The user can then load them with the correct day,
date, and time data in 24 hour BCD format (on Ta-
ble 5). Resetting the WRITE Bit to a '0' then trans-
fers the values of all time registers (7F9-7FF) to
the actual TIMEKEEPER counters and allows nor-
mal operation to resume. The FT Bit and the bits
marked as '0' in Table 5 must be written to '0' to al-
low for normal TIMEKEEPER and RAM operation.
See the Application Note AN923, “TIMEKEEPER®
Rolling Into the 21st Century” for information on
Century Rollover.
Table 5. Register Map
Keys: S = SIGN Bit
FT = FREQUENCY TEST Bit (Set to '0' for normal clock operation)
R = READ Bit
W = WRITE Bit
ST = STOP Bit
0 = Must be set to '0'