IC Phoenix
 
Home ›  LL20 > LIS3DH-LIS3DHTR,MEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometer
LIS3DH-LIS3DHTR Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
LIS3DHSTMN/a20000avaiMEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometer
LIS3DHTRSTMN/a20000avaiMEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometer


LIS3DH ,MEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometerfeatures ultra low-power operational modes that allow advanced power saving and smart ■ 16 bit data ..
LIS3DHTR ,MEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometerApplicationshost processor intervention reduction. The LIS3DH is available in small thin plastic la ..
LIS3L02AL , MEMS INERTIAL SENSOR: 3-axis - /-2g ultracompact linear accelerometer
LIS3L02ALTR , MEMS INERTIAL SENSOR: 3-axis - /-2g ultracompact linear accelerometer
LIS3L02AQ ,INERTIAL SENSOR: 3AXISLIS3L02AQINERTIAL SENSOR:3Axis - 2g/6g LINEAR ACCELEROMETERPRODUCT PREVIEW■ 3V TO 5.25V SINGLE SUPP ..
LIS3L02AQ3 ,MEMS INERTIAL SENSOR: 3-AxisFeatures■ 2.4V TO 3.6V SINGLE SUPPLY OPERATION■ LOW POWER CONSUMPTION■ ±2g/±6g USER SELECTABLE FULL ..
LM324A ,Quad Operational AmplifierLM124ALM224A - LM324ALOW POWER QUAD OPERATIONAL AMPLIFIERS ■ WIDE GAIN BANDWIDTH : 1.3MHz ■ LA ..
LM324A ,Quad Operational AmplifierElectrical Characteristics for LMx24A andLM324KA.... 6 12.2 Related Links.. 156.8 Operating Conditi ..
LM324A ,Quad Operational AmplifierBlock Diagram... 102 Applications..... 18.3 Feature Description.... 113 Description....... 18.4 Dev ..
LM324-A ,Quad Operational AmplifierSample & Support &Product Tools &TechnicalCommunityBuyFolder Documents SoftwareLM224K,LM224KA,LM324 ..
LM324-A ,Quad Operational Amplifier
LM324AD ,QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERSstandard operational amplifier types in single supply applications. Thequad amplifier can operate a ..


LIS3DH-LIS3DHTR
MEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometer
May 2010 Doc ID 17530 Rev 1 1/42
LIS3DH

MEMS digital output motion sensor
ultra low-power high performance 3-axes “nano” accelerometer
Features
Wide supply voltage, 1.71 V to 3.6 V Independent IOs supply (1.8 V) and supply
voltage compatible Ultra low-power mode consumption
down to 2 µA ±2g/±4g/±8g/±16g dynamically selectable full-
scaleI2 C/SPI digital output interface 16 bit data output 2 independent programmable interrupt
generators for free-fall and motion detection 6D/4D orientation detection Free-fall detection Motion detection Embedded temperature sensor Embedded self-test Embedded 96 levels of 16 bit data output FIFO 10000 g high shock survivability ECOPACK® RoHS and “Green” compliant
Applications
Motion activated functions Free-fall detection Click/double click recognition Intelligent power saving for handheld devices Pedometer Display orientation Gaming and virtual reality input devices Impact recognition and logging Vibration monitoring and compensation
Description

The LIS3DH is an ultra low-power high
performance three axes linear accelerometer
belonging to the “nano” family, with digital I2 C/SPI
serial interface standard output. The device
features ultra low-power operational modes that
allow advanced power saving and smart
embedded functions.
The LIS3DH has dynamically user selectable full
scales of ±2g/±4g/±8g/±16g and it is capable of
measuring accelerations with output data rates
from 1 Hz to 5 kHz. The self-test capability allows
the user to check the functioning of the sensor in
the final application. The device may be
configured to generate interrupt signals by two
independent inertial wake-up/free-fall events as
well as by the position of the device itself.
Thresholds and timing of interrupt generators are
programmable by the end user on the fly. The
LIS3DH has an integrated 32-level first in, first out
(FIFO) buffer allowing the user to store data for
host processor intervention reduction. The
LIS3DH is available in small thin plastic land grid
array package (LGA) and it is guaranteed to
operate over an extended temperature range from
-40 °C to +85 °C.
Table 1. Device summary
Contents LIS3DH
2/42 Doc ID 17530 Rev 1
Contents Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 T emperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 I2C - Inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 T erminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Normal mode, low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 6D / 4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Auxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LIS3DH Contents
Doc ID 17530 Rev 1 3/42
5.1.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.4 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.5 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.3 SPI read in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.1 STATUS_AUX (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.2 OUT_1_L (08h), OUT_1_H (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.3 OUT_2_L (0Ah), OUT_2_H (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.4 OUT_3_L (0Ch), OUT_3_H (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.5 INT_COUNTER (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.6 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.7 TEMP_CFG_REG (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.8 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.9 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.10 CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.11 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.12 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.13 CTRL_REG6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.14 REFERENCE/DA TACAPTURE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.15 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.16 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.17 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.18 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.19 FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Contents LIS3DH
4/42 Doc ID 17530 Rev 1
8.20 FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.21 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.22 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.23 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.24 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.25 CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.26 CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.27 CLICK_THS (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.28 TIME_LIMIT (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.29 TIME_LA TENCY (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.30 TIME WINDOW(3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LIS3DH List of figures
Doc ID 17530 Rev 1 5/42
List of figures

Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. I2C Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. LIS3DH electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 8. Multiple bytes SPI read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 10. Multiple bytes SPI write protocol (2 bytes example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 11. SPI read protocol in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 12. LGA-16: Mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
List of tables LIS3DH
6/42 Doc ID 17530 Rev 1
List of tables

Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 4. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. I2C slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 9. Operating mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 10. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 12. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 13. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 14. Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 15. Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 22
Table 16. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 22
Table 17. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 18. STATUS_REG_AUX register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 19. STATUS_REG_AUX description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 20. INT_COUNTER register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 21. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 22. TEMP_CFG_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 23. TEMP_CFG_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 24. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 25. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 26. Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 27. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 28. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 29. High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 30. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 31. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 32. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 33. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 34. Self test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 35. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 36. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 37. CTRL_REG6 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 38. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 39. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 40. STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 41. STATUS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 42. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 43. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 44. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 45. FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 46. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 47. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 48. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
LIS3DH List of tables
Doc ID 17530 Rev 1 7/42
Table 49. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 50. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 51. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 52. INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 53. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 54. INT1_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 55. CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 56. CLICK_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 57. CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 58. CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 59. CLICK_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 60. CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 61. TIME_LIMIT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 62. TIME_LIMIT description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 63. TIME_LATENCY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 64. TIME_LATENCY description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 65. TIME_WINDOW register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 66. TIME_WINDOW description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 67. LGA-16: Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 68. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Block diagram and pin description LIS3DH
8/42 Doc ID 17530 Rev 1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
1.2 Pin description
Figure 2. Pin connection
LIS3DH Block diagram and pin description
Doc ID 17530 Rev 1 9/42
Table 2. Pin description
Mechanical and electrical specifications LIS3DH
10/42 Doc ID 17530 Rev 1 Mechanical and electrical specifications
2.1 Mechanical characteristics

Vdd = 2.5 V, T = 25 °C unless otherwise noted (a) The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71V to 3.6 V.
Table 3. Mechanical characteristics
Typical specifications are not guaranteed. Verified by wafer level test and measurement of initial offset and sensitivity. Typical zero-g level offset value after MSL3 preconditioning. Offset can be eliminated by enabling the built-in high pass filter. The sign of “Self-test output change” is defined by CTRL_REG4 STsign bit, for all axes. Self-test output changes with the power supply. “Self-test output change” is defined as
OUTPUT[LSb](CTRL_REG4 ST bit=1) - OUTPUT[LSb](CTRL_REG4 ST bit=0). 1LSb=1mg, ±2 g Full-scale. Output data reach 99% of final value after 1 ms when enabling self-test mode, due to device filtering.
LIS3DH Mechanical and electrical specifications
Doc ID 17530 Rev 1 11/42
2.2 Temperature sensor characteristics

Vdd =2.5 V, T=25 °C unless otherwise noted (b)

2.3 Electrical characteristics

Vdd = 2.5 V, T = 25 °C unless otherwise noted (c)
The product is factory calibrated at 2.5 V.
Table 4. Temperature sensor characteristics
Typical specifications are not guaranteed. 8-bit resolution. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
Table 5. Electrical characteristics
Typical specification are not guaranteed. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the
measurement chain is powered off. Referred to Table 25 for the ODR value and configuration. Time to obtain valid data after exiting power-down mode.
Mechanical and electrical specifications LIS3DH
12/42 Doc ID 17530 Rev 1
2.4 Communication interface characteristics
2.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Note: 1 Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on
characterization results, not tested in production. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and output port. When no communication is on-going, data on CS, SPC, SDI and SDO are driven by internal
pull-up resistors.
Table 6. SPI slave timing values
LIS3DH Mechanical and electrical specifications
Doc ID 17530 Rev 1 13/42
2.4.2 I2 C - Inter IC control interface

Subject to general operating conditions for Vdd and top.
Figure 4. I2 C Slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both port.
Table 7. I2 C slave timing values
Data based on standard I2 C protocol requirement, not tested in production. Cb = total capacitance of one bus line, in pF.
Mechanical and electrical specifications LIS3DH
14/42 Doc ID 17530 Rev 1
2.5 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.

Note: Supply voltage on any pin should never exceed 4.8 V
Table 8. Absolute maximum ratings

This is a mechanical shock sensitive device, improper handling can cause permanent
damages to the part.
This is an ESD sensitive device, improper handling can cause permanent damages to
the part.
LIS3DH Terminology and functionality
Doc ID 17530 Rev 1 15/42 Terminology and functionality
3.1 Terminology
3.1.1 Sensitivity

Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and also time. The sensitivity tolerance describes
the range of Sensitivities of a large population of sensors.
3.1.2 Zero-g level

Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady state on a horizontal surface
measure 0 g in X axis and 0 g in Y axis whereas the Z axis measure 1 g. The output is
ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data
expressed as 2’s complement number). A deviation from ideal value in this case is called
Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the
offset can slightly change after mounting the sensor onto a printed circuit board or exposing
it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level
change vs. temperature”. The Zero-g level tolerance (TyOff) describes the standard
deviation of the range of Zero-g levels of a population of sensors.
3.2 Functionality
3.2.1 Normal mode, low power mode

LIS3DH provides two different operating modes respectively reported as normal mode and
low power mode. While normal mode guarantees high resolution, low power mode reduces
further the current consumption.
The table below reported summarizes how to select the operating mode.
Table 9. Operating mode selection
Terminology and functionality LIS3DH
16/42 Doc ID 17530 Rev 1
3.2.2 Self-test

Self-test allows to check the sensor functionality without moving it. The self-test function is
off when the self-test bit (ST) is programmed to ‘0‘. When the self-test bit is programmed to
‘1‘ an actuation force is applied to the sensor, simulating a definite input acceleration. In this
case the sensor outputs exhibit a change in their DC levels which are related to the selected
full scale through the device sensitivity. When self-test is activated, the device output level is
given by the algebraic sum of the signals produced by the acceleration acting on the sensor
and by the electrostatic test-force. If the output signals change within the amplitude
specified inside Table 3, then the sensor is working properly and the parameters of the
interface chip are within the defined specifications.
3.2.3 6D / 4D orientation detection

The LIS3DH include 6D / 4D orientation detection.
6D / 4D orientation recognition: In this configuration the interrupt is generated when the

device is stable in a known direction. In 4D configuration Z axis position detection is disable.
3.3 Sensing element

A proprietary process is used to create a surface micro-machined accelerometer. The
technology allows carrying out suspended silicon structures which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with the traditional packaging techniques a cap is placed on
top of the sensing element to avoid blocking the moving parts during the moulding phase of
the plastic encapsulation.
When an acceleration is applied to the sensor the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady state the nominal value of the capacitors are few pF and when an acceleration is
applied the maximum variation of the capacitive load is in the fF range.
3.4 IC interface

The complete measurement chain is composed by a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is
finally available to the user by an analog-to-digital converter.
The acceleration data may be accessed through an I2 C/SPI interface thus making the
device particularly suitable for direct interfacing with a microcontroller.
The LIS3DH features a Data-Ready signal (RDY) which indicates when a new set of
measured acceleration data is available thus simplifying data synchronization in the digital
system that uses the device.
The LIS3DH may also be configured to generate an inertial Wake-Up and Free-Fall interrupt
signal accordingly to a programmed acceleration event along the enabled axes. Both Free-
Fall and Wake-Up can be available simultaneously on two different pins.
LIS3DH Terminology and functionality
Doc ID 17530 Rev 1 17/42
3.5 Factory calibration

The IC interface is factory calibrated for sensitivity (So) and Zero-g level (T yOff).
The trimming values are stored inside the device in a non volatile memory. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be used
during the active operation. This allows to use the device without further calibration.
3.6 FIFO

The LIS3DH contains a 10 bit, 32-level FIFO. Buffered output allows 4 operation modes:
FIFO, stream, trigger and FIFO ByPass. Where FIFO bypass mode is activated FIFO is not
operating and remains empty. In FIFO mode, data from acceleration detection on x, y, and z-
axes measurements are stored in FIFO.
3.7 Auxiliary ADC

The LIS3DH contains an auxiliary 10 bit ADC with 3 separate dedicated inputs.
Application hints LIS3DH
18/42 Doc ID 17530 Rev 1
4 Application hints
Figure 5. LIS3DH electrical connection

The device core is supplied through Vdd line while the I/O pads are supplied through
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should
be placed as near as possible to the pin 14 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I2 C or SPI interfaces.When using the I2 C, CS must be tied high.
The ADC1, ADC2 & ADC3 if not used can be left floating or keep connected to Vdd or GND.
The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be
completely programmed by the user through the I2 C/SPI interface.
4.1 Soldering information

The LGA package is compliant with the ECOPACK® , RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at .
LIS3DH Digital main blocks
Doc ID 17530 Rev 1 19/42
5 Digital main blocks
5.1 FIFO

LIS3DH embeds a 32-slot of 10bit data FIFO for each of the three output channels, X, Y and
Z. This allows a consistent power saving for the system, since the host processor does not
need to continuously poll data from the sensor, but it can wakeup only when needed and
burst the significant data out from the FIFO. This buffer can work accordingly to four different
modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each mode is
selected by the FIFO_MODE bits into the FIFO_CTRL_REG (2E). Programmable
Watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated
interrupts on INT1/2 pin (configuration through FIFO_CFG_REG).
5.1.1 Bypass mode

In Bypass mode, the FIFO is not operational and for this reason it remains empty. As
described in the next figure, for each channel only the first address is used. The remaining
FIFO slots are empty.
5.1.2 FIFO mode

In FIFO mode, data from X, Y and Z channels are stored into the FIFO. A watermark
interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG in order to be raised
when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits of
FIFO_CTRL_REG. The FIFO continues filling until it is full (32 slots of 10data for X, Y and
Z). When full, the FIFO stops collecting data from the input channels.
5.1.3 Stream mode

In the stream mode, data from X, Y and Z measurement are stored into the FIFO. A
watermark interrupt can be enabled and set as in the FIFO mode.The FIFO continues filling
until it’s full (32 slots of 10data for X, Y and Z). When full, the FIFO discards the older data
as the new arrive.
5.1.4 Stream-to-FIFO mode

In Stream-to_FIFO mode, data from X, Y and Z measurement are stored into the FIFO. A
watermark interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG) in order
to be raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits
of FIFO_CTRL_REG. The FIFO continues filling until it’s full (32 slots of 10 data for X, Y and
Z). When full, the FIFO discards the older data as the new arrive. Once trigger event occurs,
the FIFO starts operating in FIFO mode.
5.1.5 Retrieve data from FIFO

FIFO data is read through OUT_X (Addr reg 28h,29h), OUT_Y (Addr reg 2Ah,2Bh) and
OUT_Z (Addr reg 2Ch,2Dh). When the FIFO is in stream, T rigger or FIFO mode, a read
operation to the OUT_X, OUT_Y or OUT_Z registers provides the data stored into the FIFO.
Each time data is read from the FIFO, the oldest X, Y and Z data are placed into the OUT_X,
OUT_Y and OUT_Z registers and both single read and read_burst operations can be used.
Digital interfaces LIS3DH
20/42 Doc ID 17530 Rev 1
6 Digital interfaces

The registers embedded inside the LIS3DH may be accessed through both the I2 C and SPI
serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I2 C interface, CS
line must be tied high (i.e. connected to Vdd_IO).

6.1 I2 C serial interface

The LIS3DH I2 C is a bus slave. The I2 C is employed to write data into registers whose
content can also be read back.
The relevant I2 C terminology is given in the table below.

There are two signals associated with the I2 C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up
resistor. When the bus is free both the lines are high.
The I2 C interface is compliant with fast mode (400 kHz) I2 C standards as well as with the
normal mode.
Table 10. Serial interface pin description
Table 11. Serial interface pin description
LIS3DH Digital interfaces
Doc ID 17530 Rev 1 21/42
6.1.1 I2 C operation

The transaction on the bus is started through a ST ART (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the Master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the Master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the Master.
The Slave ADdress (SAD) associated to the LIS3DH is 001100xb. SDO/SA0 pad can be
used to modify less significant bit of the device address. If SA0 pad is connected to voltage
supply, LSb is ‘1’ (address 0011001b) else if SA0 pad is connected to ground, LSb value is
‘0’ (address 0011000b). This solution permits to connect and address two different
accelerometers to the same I2 C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2 C embedded inside the LIS3DH behaves like a slave device and the following protocol
must be adhered to. After the start condition (ST) a slave address is sent, once a slave
acknowledge (SAK) has been returned, a 8-bit sub-address (SUB) is transmitted: the 7 LSb
represent the actual register address while the MSB enables address auto increment. If the
MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow
multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the Master transmit to the slave with direction unchanged. Table 12 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 12. SAD+Read/Write patterns


Table 13. Transfer when master is writing one byte to slave
Table 14. Transfer when master is writing multiple bytes to slave:
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED