L4962EH ,1.5A POWER SWITCHING REGULATORL4962 1.5A POWER SWITCHING REGULATOR1.5A OUTPUT CURRENT5.1V TO 40V OUTPUT VOLTAGE RANGEPRECISE ( 2 ..
L4962ES ,1.5A POWER SWITCHING REGULATORELECTRICAL CHARACTERISTICS (continued)Symbol Parameter Test Conditions Min. Typ. Max. UnitDYNAMIC C ..
L4963 ,1.5A SWITCHING REGULATORL4963L4963D®1.5A SWITCHING REGULATOR1.5A OUTPUT LOAD CURRENT5.1 TO 36V OUTPUT VOLTAGE RANGEDISCONTI ..
L4963D ,1.5A SWITCHING REGULATORABSOLUTE MAXIMUM RATINGSSymbolParameter Value UnitSO20 PowerdipViInput Voltage (pin 1 and pin 3 con ..
L4963D013TR ,1.5A SWITCHING REGULATORFeatures of the deviceThe L4963 is mounted in a 12+3+3 lead Powerdipinclude remote inhibit, interna ..
L4963W ,1.5A SWITCHING REGULATORL4963L4963D®1.5A SWITCHING REGULATOR1.5A OUTPUT LOAD CURRENT5.1 TO 36V OUTPUT VOLTAGE RANGEDISCONTI ..
LBC856BLT1G , General Purpose Transistors PNP Silicon
LBC857BDW1T1G , Dual General Purpose Transistors
LBC857BLT1G , General Purpose Transistors PNP Silicon
LBC858BLT1G , General Purpose Transistors PNP Silicon
LBE63C , Power TOPLED with Lens Enhanced Optical Power LED (ATON)
LBE67C , Power TOPLED® Enhanced optical Power LED (ATON®)
L4962A-L4962A.-L4962E-L4962EH
1.5A POWER SWITCHING REGULATOR
L49621.5A POWER SWITCHING REGULATOR
1.5A OUTPUT CURRENT
5.1V TO 40V OUTPUT VOLTAGE RANGE
PRECISE(± 2%) ON-CHIP REFERENCE
HIGH SWITCHING FREQUENCY
VERY HIGH EFFICIENCY (UP TO 90%)
VERY FEW EXTERNAL COMPONENTS
SOFT START
INTERNAL LIMITING CURRENT
THERMAL SHUTDOWN
DESCRIPTIONThe L4962isa monolithicpower switching regula-
tor delivering 1.5Aata voltage variable from5Vto
40Vin step down configuration.
Featuresof the device include current limiting, soft
start, thermal protectionand0to 100% duty cycle
for continuousoperating mode.
June 2000
ORDERING NUMBERS: L4962/A(12+2+2 Powerdip)
L4962E/A(Heptawatt
Vertical)
L4962EH/A (Horizontal
Heptawatt)
The L4962is mountedina 16-leadPowerdipplastic
packageand Heptawattpackageand requires very
few external components.
Efficient operationat switching frequenciesupto
150KHz allowsa reductionin the size and costof
external filter components.
HEPTAWATTPOWERDIP(12+2+2)
BLOCK DIAGRAMPinX= Powerdip
Pin(X)= Heptawatt
1/16
PIN CONNECTION (Top view)
2/16
Symbol Parameter Heptawatt PowerdipRthj-case Thermal resistance junction-case max 4°C/W -
Rthj-pins Thermal resistance junction-pins max - 14°C/W
Rthj-amb Thermal resistance junction-ambient max 50°C/W 80°C/W* Obtained withthe GND pinssolderedto printedcircuit with minimized copper area.
THERMAL DATA
HEPTAWATT POWERDIP NAME FUNCTION 7 SUPPLY VOLTAGE Unregulated voltage input.An internal regulator powers
the internal logic. 10 FEEDBACK INPUT Thefeedback terminalof theregulation loop.Theoutput connected directlyto this terminalfor 5.1V operation;is connectedviaa dividerfor higher voltages. 11 FREQUENCY
COMPENSATION series RC network connected between this terminal
and ground determines the regulation loop gain
characteristics.
PIN FUNCTIONS
Symbol Parameter Value Unit Input voltage 50 V -V2 Inputto output voltage difference 50 V Negative output DC voltage -1 V
Output peak voltageatt= 0.1μs;f= 100KHz -5 V
V11,V15 Voltageatpin11,15 5.5 V
V10 Voltageatpin10 7 V
I11 Pin11 sink current 1 mA
I14 Pin14 source current 20 mA
Ptot Power dissipationat Tpins≤ 90°C (Powerdip)
Tcase≤ 90°C (Heptawatt)
Tj,Tstg Junction and storage temperature -40to 150 °C
ABSOLUTE MAXIMUM RATINGS
L4962
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS Output voltage range Vi= 46V Io =1A Vref 40 V Input voltage range Vo =Vrefto 36V Io= 1.5A 9 46 VVo Line regulation Vi= 10Vto 40V Vo =Vref Io =1A 15 50 mVVo Load regulation Vo =Vref Io= 0.5Ato 1.5A 8 20 mV
Vref Internal reference voltage
(pin10)=9Vto 46V Io=1A 5 5.1 5.2 V VrefT
Average temperature
coefficientof refer. voltage =0°Cto 125°C =1A
0.4 mV/°C Dropout voltage Io= 1.5A 1.5 2 V
Iom Maximum operatingload
current=9Vto 46V =Vrefto 36V
1.5 A
I2L Current limiting threshold
(pin2)=9Vto 46V =Vrefto 36V 3.3 A
ISH Input average current Vi= 46V; output short-circuit 15 30 mA Efficiency f= 100KHz Vo =Vref 70 % =1A Vo= 12V 80 %
SVR Supply voltage ripple
rejectionVi =2Vrms
fripple= 100Hz =Vref Io=1A 56 dB
ELECTRICAL CHARACTERISTICS (Referto the test circuit,Tj =25 °C,Vi= 35V, unless otherwise
specified)
HEPTAWATT POWERDIP NAME FUNCTION 4,5,12,13 GROUND Common ground terminal. 14 OSCILLATOR A parallel RC network connectedto this terminal
determines the switching frequency. This pin mustbe
connectedtopin7 input when the internal oscillatoris
used. 15 SOFT START Soft start time constant.A capacitoris connected
between this terminal and groundto definethe soft start
time constant. This capacitor also determines the
average short circuit output current. 2 OUTPUT Regulator output.3,6,9,16
N.C.
PIN FUNCTIONS (cont’d)
3/16
L4962
4/16
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS (cont’d) Switching frequency 85 100 115 KHzfVi
Voltage stabilityof
switching frequency=9Vto 46V 0.5 %fTj
Temperature stabilityof
switching frequency =0°Cto 125°C1 %
fmax Maximum operating
switching frequency =Vref Io=1A 120 150 KHz
Tsd Thermal shutdown
junction temperature
150 °C
CHARACTERISTICSI7Q Quiescent drain current 100% duty cycle
pins2 and14 open= 46V 40 mA duty cycle 15 20 mA
-I2L Output leakage current 0% duty cycle 1 mA
SOFT STARTI15SO Source current 100 140 180 μA
I15SI Sink current 50 70 120 μA
ERRORAMPLIFIERV11H High level output voltage V10= 4.7V I11= 100μA 3.5 V
V11L Low level output voltage V10= 5.3V I11= 100μA 0.5 V
I11SI Sink output current V10= 5.3V 100 150 μA
-I11SO Source output current V10= 4.7V 100 150 μA
I10 Input bias current V10= 5.2V 2 10 μA DC open loop gain V11 =1Vto3V 46 55 dB
OSCILLATOR-I14 Oscillator source current 5 mA
ELECTRICAL CHARACTERISTICS (continued)
L4962
CIRCUIT OPERATION(referto the blockdiagram)
TheL4962isa monolithicstepdownswitchingregu-
latorprovidingoutputvoltagesfrom 5.1Vto40V and
delivering 1.5A.
The regulation loop consistsofa sawtooth oscilla-
tor, error amplifier, comparator and the output
stage.An errorsignalis producedbycomparing the
output voltage witha precise 5.1V on-chip refer-
ence (zener zap trimmedto± 2%).
This errorsignalis thencomparedwiththesawtooth
signalto generate the fixed frequencypulse width
modulated pulseswhich drive the output stage.
The gain and frequency stabilityof the loop canbe
adjustedby an external RC network connectedto
pin 11. Closing the loop directly gives an output
voltageof 5.1V. Higher voltages are obtainedby
insertinga voltagedivider.
Output overcurrentsat switchon are preventedby
the soft start function. The error amplifier outputis
initially clampedby the external capacitor Css and
allowedto rise, linearly,as thiscapacitoris chargeda constantcurrent source. Output overload pro-
tectionis providedin the formofa current limiter.
The load currentis sensedby an internal metal
resistor connectedtoa comparator.When the load
currentexceedsa preset thresholdthis comparator
setsa flip flop which disables the output stage and
discharges the soft start capacitor.A second com-
parator resets the flip flop when the voltage across
the soft start capacitorhas fallento 0.4V.
The output stageis thus re-enabled and the output
voltagerisesunder controlof the soft startnetwork. the overload conditionis still present the limiter
will trigger again when the threshold currentis
reached.The averageshort circuitcurrentis limiteda safevalueby the dead time introducedby the
soft start network. The thermal overload circuit dis-
ables circuit operation when the junction tempera-
ture reaches about 150°C and has hysteresisto
prevent unstable conditions.
Figure1. Soft start waveforms
Figure2. Current limiter waveforms5/16
L4962
6/16
Figure 4. Quiescent drain
currentvs. supplyvoltage (0%
duty cycle)
Figure 5. Quiescent drain
current vs. supply voltage
(100% duty cycle)
Figure 6. Quiescent drain
current vs. junction tem-
perature (0% duty cycle)
Figure3. Test and application circuit (Powerdip) D1: BYW98or3A Schottky diode, 45Vof VRRM; L1: CORE TYPE- MAGNETICS 58120-A2 MPP TURNS 45, WIREGAUGE: 0.8mm (20 AWG) C6,C7: ROE, EKR 220μF 40V
L4962
Figure 7. Quiescent drain
current vs. junction te m-
perature (100% duty cycle)
Figure8. Reference voltage
(pin 10) vs.Vi rdip) vs.Vi
Figure9. Reference voltage
(pin 10) vs. junction tem-
perature
Figure 10. Open loop fre-
quency and phase re- sponse error amplifier
Figure 11. Switching fre-
quency vs. input voltage
Figure 12. Switching fre-
quency vs. junction tem-
perature
Figure 13. Switching fre-
quency vs. R2(see testcircuit)
Figure 15. Load transient
response
Figure 14. Line transient
response7/16
L4962
8/16
Figure 16. Supply voltage
ripplerejection vs. frequency
Figure 17. Dropout voltage
between pin7 and pin2 vs.
currentat pin2
Figure 18. Dropout voltage
between pin 7and 2vs.
junction temperature
Figure 19. Effici ency vs.
output current
Figure 20. Efficiency vs.
output current
Figure 21. Efficiency vs.
output current
Figure 22. Effic iency vs.
output voltage
Figure 23. Efficiency vs.
output voltage Figure 24. Maximum allow-
ablepowerdissipationvs. am-
bient temperature (Powerdip)
L4962