IC Phoenix
 
Home ›  II32 > IRFR13N20D-IRFR13N20DTR,200V Single N-Channel HEXFET Power MOSFET in a D-Pak package
IRFR13N20D-IRFR13N20DTR Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
IRFR13N20DIRN/a2500avai200V Single N-Channel HEXFET Power MOSFET in a D-Pak package
IRFR13N20DTRIRN/a1750avai200V Single N-Channel HEXFET Power MOSFET in a D-Pak package


IRFR13N20D ,200V Single N-Channel HEXFET Power MOSFET in a D-Pak packageApplicationsV R max IDSS DS(on) Dl High frequency DC-DC converters200V 0.235Ω 13ABenefitsl Low Gate ..
IRFR13N20DPBF , SMPS MOSFET ( VDSS=200V , RDS(on)max=0.235Ω , ID=13A )
IRFR13N20DTR ,200V Single N-Channel HEXFET Power MOSFET in a D-Pak packagePD- 93814AIRFR13N20DSMPS MOSFET IRFU13N20D®HEXFET Power MOSFET
IRFR15N20D ,200V Single N-Channel HEXFET Power MOSFET in a D-Pak packageApplicationsV R max IDSS DS(on) Dl High frequency DC-DC converters200V 0.165Ω 17ABenefitsl Low Gate ..
IRFR15N20DTRLP ,200V Single N-Channel HEXFET Power MOSFET in a D-Pak packageApplicationsV R max IDSS DS(on) D High frequency DC-DC converters200V 0.165Ω 17A Lead-FreeBenefit ..
IRFR18N15 ,SMPS MOSFETApplicationsV R max IDSS DS(on) Dl High frequency DC-DC converters150V 0.125Ω 18ABenefitsl Low Gate ..
ISL78214ARZ , 4A Low Quiescent Current High Efficiency Synchronous Buck Regulator
ISL8009AIRZ-T , 1.5A Low Quiescent Current 1.6MHz High Efficiency Synchronous Buck Regulator
ISL8009AIRZ-T , 1.5A Low Quiescent Current 1.6MHz High Efficiency Synchronous Buck Regulator
ISL8011IRZ-T , 1.2A Integrated FETs, High Efficiency Synchronous Buck Regulator
ISL8011IRZ-T , 1.2A Integrated FETs, High Efficiency Synchronous Buck Regulator
ISL8012IRZ , 2A Low Quiescent Current 1MHz High Efficiency Synchronous Buck Regulator


IRFR13N20D-IRFR13N20DTR
200V Single N-Channel HEXFET Power MOSFET in a D-Pak package
1
IRFR13N20D
IRFU13N20DSMPS MOSFET
HEXFET® Power MOSFETHigh frequency DC-DC converters
Benefits
Applications
Low Gate to Drain Charge to Reduce
Switching LossesFully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)Fully Characterized Avalanche Voltage
and CurrentDSSRDS(on) maxID
200V0.235Ω13A
Typical SMPS Topologies

l Telecom 48V input Forward Converters
ParameterMax.Units

ID @ TC = 25°CContinuous Drain Current, VGS @ 10V13
ID @ TC = 100°CContinuous Drain Current, VGS @ 10V9.2A
IDMPulsed Drain Current 52
PD @TC = 25°CPower Dissipation110W
Linear Derating Factor0.71W/°C
VGSGate-to-Source Voltage ± 30V
dv/dtPeak Diode Recovery dv/dt ƒ2.2V/nsOperating Junction and-55 to + 175
TSTGStorage Temperature Range
Soldering Temperature, for 10 seconds300 (1.6mm from case )
Absolute Maximum Ratings

PD- 93814A
Notes through † are on page 10
D-Pak
IRFR13N20D
I-Pak
IRFU13N20D
IRFR13N20D/IRFU13N20D
ParameterMin.Typ.Max.Units
Conditions
gfsForward Transconductance6.2––––––SVDS = 50V, ID = 7.8ATotal Gate Charge–––25 38 ID = 7.8A
QgsGate-to-Source Charge–––7.311nCVDS = 160V
QgdGate-to-Drain ("Miller") Charge–––1218VGS = 10V, „
td(on)Turn-On Delay Time–––11–––VDD = 100VRise Time–––27–––ID = 7.8A
td(off)Turn-Off Delay Time–––17–––RG = 6.8ΩFall Time–––10–––VGS = 10V „
CissInput Capacitance–––830–––VGS = 0V
CossOutput Capacitance–––140–––VDS = 25V
CrssReverse Transfer Capacitance–––35–––pFƒ = 1.0MHz
CossOutput Capacitance–––990–––VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
CossOutput Capacitance–––57–––VGS = 0V, VDS = 160V, ƒ = 1.0MHz
Coss eff.Effective Output Capacitance–––59–––VGS = 0V, VDS = 0V to 160V …
Dynamic @ TJ = 25°C (unless otherwise specified)

ParameterTyp.Max.Units

EASSingle Pulse Avalanche Energy‚–––130mJ
IARAvalanche Current–––7.8A
EARRepetitive Avalanche Energy–––11mJ
Avalanche Characteristics

ParameterMin.Typ.Max.Units
ConditionsContinuous Source CurrentMOSFET symbol
(Body Diode)––––––showing the
ISMPulsed Source Currentintegral reverse
(Body Diode) ––––––p-n junction diode.
VSDDiode Forward Voltage––––––1.3VTJ = 25°C, IS = 7.8A, VGS = 0V „
trrReverse Recovery Time–––140210nsTJ = 25°C, IF = 7.8A
QrrReverse RecoveryCharge–––7501120nCdi/dt = 100A/μs „
tonForward Turn-On TimeIntrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Diode Characteristics

Static @ TJ = 25°C (unless otherwise specified)
ParameterMin.Typ.Max.Units
Conditions
V(BR)DSSDrain-to-Source Breakdown Voltage200––––––VVGS = 0V, ID = 250μA
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.25 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on)Static Drain-to-Source On-Resistance––––––0.235ΩVGS = 10V, ID = 8.0A „
VGS(th)Gate Threshold Voltage3.0–––5.5VVDS = VGS, ID = 250μA
––––––25μAVDS = 200V, VGS = 0V
––––––250VDS = 160V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage––––––100VGS = 30V
Gate-to-Source Reverse Leakage––––––-100nAVGS = -30VIGSS
IDSSDrain-to-Source Leakage Current
ParameterTyp.Max.Units

RθJCJunction-to-Case–––1.4
RθJAJunction-to-Ambient (PCB mount)*–––50°C/W
RθJAJunction-to-Ambient–––110
Thermal Resistance
IRFR13N20D/IRFU13N20D
3
Fig 4. Normalized On-Resistance

Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics

10
100
0.1 1 10 100
20μs PULSE WIDTH
T = 25CJ°
TOP
BOTTOM
VGS
15V
10V
9.0V
8.0V
7.5V
7.0V
6.5V
6.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
6.0V
10
100
0.1 1 10 100
20μs PULSE WIDTH
T = 175CJ°
TOP
BOTTOM
VGS
15V
10V
9.0V
8.0V
7.5V
7.0V
6.5V
6.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
10
1006789101112
V = 50V
20μs PULSE WIDTH
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
T = 25 CJ°
T = 175 CJ°
T , Junction Temperature( C)
R , Drain-to-Source On Resistance
(Normalized)
DS(on)==
10V
13A
IRFR13N20D/IRFU13N20D
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.

Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.

Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode

Forward Voltage10203040
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
FOR TEST CIRCUIT
SEE FIGURE =D
7.8A= 40VDS= 100VDS= 160VDS
10
100
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
V = 0 V GS
T = 25 CJ°
T = 175 CJ°
10
100
1000 10 100 1000
OPERATION IN THIS AREA LIMITEDBY RDS(on)
Single Pulse
= 175 C
= 25 C°J
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
10us
100us
1ms
10ms101001000DS, Drain-to-Source Voltage (V)
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZiss = Cgs + Cgd, Cds SHORTEDrss = Cgd oss = Cds + Cgd
IRFR13N20D/IRFU13N20D
5
Fig 10a. Switching Time Test Circuit

VDS
90%
10%
VGS
td(on)trtd(off)tf
Fig 10b. Switching Time Waveforms

VDS
Pulse Width ≤ 1 μs
Duty Factor ≤ 0.1 %
VGS
D.U.T.
VGS-VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.

Case Temperature
10
Notes:
1. Duty factor D =t / t
2. Peak T=Px Z+ T2DMthJCC
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
thJC
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)50751001251501750
T , Case Temperature( C)
I , Drain Current (A)C
IRFR13N20D/IRFU13N20DGSQGD
Charge
D.U.T.VDSIG
3mA
VGS
.3μF
50KΩ
.2μF12V
CurrentRegulator
SameTypeasD.U.T.
CurrentSamplingResistors
VGS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy

Vs. Drain CurrentFig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit

V(BR)DSS
IASG
IAS
0.01Ωtp
D.U.TVDSVDD
DRIVER
15V
20V5075100125150175
Starting T , Junction Temperature( C)
E , Single Pulse Avalanche Energy (mJ)
TOP
BOTTOM
3.2A
5.5A
7.8A
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED