DTV56F ,CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODEDTVseries®(CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODEMAIN PRODUCTS CHARACTERISTICSI 5 A t ..
DTV64F ,CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODEDTVseries®(CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODEMAIN PRODUCTS CHARACTERISTICSI 5 A t ..
DTV82 ,CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODEFEATURES AND BENEFITSHIGH BREAKDOWN VOLTAGE CAPABILITYISOWATT220ACTO-220ACVERY FAST RECOVERY DIODED ..
DTV82F ,CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODEDTVseries®(CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODEMAIN PRODUCTS CHARACTERISTICSI 5 A t ..
DV74AC244 , Octal buffer/Line Driver with 3-state Outputs
DVIULC6-2P6 ,Ultra Low capacitance 2 lines ESD protectionApplicationsBenefits■ DVI ports up to 1.65 Gb/s■ ESD standards compliance guaranteed at ■ IEEE 1394 ..
EL2074 ,400MHz GBWP Gain-of-2 Stable Operational AmplifierApplicationsintegrators, sample-and-holds, and log amps. The low distor-• High resolution videotion ..
EL2075 ,2GHz GBWP Gain-of-10 Stable Operational Amplifierapplications at a gain of 10 or • High-speed signal processinggreater requiring high speed and prec ..
EL2120 ,Op Amp, Current Feedback, 100MHz, with DisableElectrical Specifications V = ±5V; R = 150Ω, T = 25°C unless otherwise specifiedS L APARAMETER DESC ..
EL2120 ,Op Amp, Current Feedback, 100MHz, with DisableApplicationsslew rate the part makes an excellent high-speed buffer. Video gain blockThe EL2120 ha ..
EL2126CW-T7A ,Ultra-Low Noise/ Low Power/ Wideband AmplifierApplicationsThe EL2126 is stable for gains of 10 and greater and uses traditional voltage feedback. ..
EL2140 ,150MHz, Differential Twisted-Pair Driver, Fixed Gain AmplifierApplicationsdistortion amplification, so this amplifier was designed with this as a primary goal. T ..
DTV110-DTV110F-DTV32-DTV32D-DTV32F-DTV-32F-DTV56F-DTV64F-DTV82-DTV82F
CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODE
August 1999 - Ed: 2B
HIGH BREAKDOWN VOLTAGE CAPABILITY
VERY FAST RECOVERY DIODE
SPECIFIED TURN ON SWITCHING
CHARACTERISTICS
LOW STATIC AND PEAK FORWARD VOLTAGE
DROP FOR LOW DISSIPATION
SUITED TO 32-110kHz MONITORS AND
16kHz TV DEFLECTION
INSULATED VERSION (ISOWATT220AC):
Insulating voltage = 2000V DC
Capacitance = 12pF
PLANAR TECHNOLOGY ALLOWING HIGH
QUALITY AND BEST ELECTRICAL
CHARACTERISTICS
FEATURES AND BENEFITSHigh voltage diode with high current capability
dedicated to horizontal deflection. DTV16 is
optimized to TV meanwhile DTV32 to DTV110 are
covering the full range of monitors from the low
end to the professional hi-definition SXGA CAD
display units.
These devices are packaged either in TO220-AC
or in ISOWATT220AC.
DESCRIPTION
MAIN PRODUCTS CHARACTERISTICS
DTVseries(CRT HORIZONTAL DEFLECTION)
HIGH VOLTAGE DAMPER DIODE
ABSOLUTE RATINGS1/10
THERMAL RESISTANCES pulse test : * tp = 380 μs, δ < 2%
** tp = 5 ms, δ < 2%
STATIC ELECTRICAL CHARACTERISTICS
DTVseries2/10
RECOVERY CHARACTERISTICSTo evaluate the maximum conduction losses use the following equation :
DTV16 P= 1.14 x IF(AV) + 0.072 x IF2(RMS)
DTV32 P= 1.069 x IF(AV) + 0.047 x IF2(RMS)
DTV56 P= 1.15 x IF(AV) + 0.059 x IF2(RMS)
DTV64 P= 1.06 x IF(AV) + 0.053 x IF2(RMS)
DTV82 P= 1.01 x IF(AV) + 0.048 x IF2(RMS)
DTV110 P= 1.12 x IF(AV) + 0.038 x IF2(RMS)
TURN-ON SWITCHING CHARACTERISTICS
DTVseries3/10
02468 100.0
PF(av)(W)
Fig. 1-1: Power dissipation versus peak forward
current (triangular waveform, δ=0.45).
2.0
PF(av)(W)
Fig. 1-3: Power dissipation versus peak forward
current (triangular waveform, δ=0.45).
2.0
PF(av)(W)
Fig. 1-2: Power dissipation versus peak forwardcurrent (triangular waveform, δ=0.45). 25 50 75 100 125 1500
IF(av)(A)
Fig. 2-1: Average current versus case temperature(δ=0.5) (TO-220AC). 25 50 75 100 125 1500
IF(av)(A)
Fig. 2-2: Average current versus case temperature(δ=0.5) (ISOWATT220AC).
DTVseries4/10
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.500.1
IFM(A)
Fig. 3-3: Forward voltage drop versus forward
current (DTV56D/F).
IFM(A)
Fig. 3-4: Forward voltage drop versus forward
current (DTV64D/F).
IFM(A)
Fig. 3-1: Forward voltage drop versus forward
current (DTV16D/F).
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.1
IFM(A)
Fig. 3-2: Forward voltage drop versus forward
current (DTV32D/F).
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.500.1
IFM(A)
Fig. 3-5: Forward voltage drop versus forward
current (DTV82D/F). 0.5 1 1.5 2 2.5 30.1
IFM(A)
Fig. 3-6: Forward voltage drop versus forward
current (DTV110D/F).
DTVseries5/10
1E-3 1E-2 1E-1 1E+00
IM(A)
Fig. 4-1: Non repetitive surge peak forward currentversus overload duration (TO-220AC)
(DTV16D / DTV32D / DTV56D).
1E-3 1E-2 1E-1 1E+00
IM(A)
Fig. 4-2: Non repetitive surge peak forward currentversus overload duration (ISOWATT220AC)
(DTV16F / DTV32F / DTV56F).
1E-3 1E-2 1E-1 1E+00
IM(A)
Fig. 4-3: Non repetitive surge peak forward current
versus overload duration (TO-220AC)
(DTV64D / DTV82D / DTV110D).
1E-3 1E-2 1E-1 1E+00
IM(A)
Fig. 4-4: Non repetitive surge peak forward currentversus overload duration (ISOWATT220AC)
(DTV64F / DTV82F / DTV110F).
0.1 0.2 0.5 1 2 50
Qrr(nc)
Fig. 5.2: Reverse recovery charges versus dIF/dt.
0.1 0.2 0.5 1.0 2.0 5.00.0
Qrr(μC)
Fig. 5.1: Reverse recovery charges versus dIF/dt
(DTV16D/F).
DTVseries6/10