BYW51G-200-TR ,HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODESapplications.BYW51R-200ABSOLUTE RATINGS (limiting values, per diode)Symbol Parameter Value UnitV Re ..
BYW54 ,Standard Avalanche Sinterglass Diode
BYW54 ,Standard Avalanche Sinterglass Diode
BYW54 ,Standard Avalanche Sinterglass Diode
BYW55 ,Standard Avalanche Sinterglass Diode
BYW56 ,Standard Avalanche Sinterglass Diode
C505 ,8-Bit Single-Chip MicrocontrollerData Sheet, Dec. 2000C505C505CC505AC505CA8-Bit Single-Chip MicrocontrollerMicrocontrollersNe ve r ..
C50A50Z4 , Surface Mount Termination 50 Watts, 50Ω
C5100 , 5000 WATTS (AC) DC/D CSINGLE OUTPUT
C5100 , 5000 WATTS (AC) DC/D CSINGLE OUTPUT
C5122 , CB Transceiver PLL IC
C5148 , NPN TRIPLE DIFFUSED MESA TYPE (DISPLAY, COLOR TV HIGH SPEED SWITCHING APPLICATIONS)
BYW51G-200-TR
HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES
BYW51/F/G/FP/R-200HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES SUITED FOR SMPS VERY LOW FORWARD LOSSES NEGLIGIBLE SWITCHING LOSSES HIGH SURGE CURRENT CAPABILITY INSULATED PACKAGES (ISOWATT220AB/
TO-220FP):
Insulation voltage= 2000V DC
Capacitance=12pF
FEATURES AND BENEFITSDual center tap rectifier suited for Switched Mode
Power Supplies and high frequency DCto DC
converters.
Packaged in TO-220AB, ISOWATT220AB,
TO-220FP, D2 PAK orI2 PAK, this device is
intended for usein low voltage, high frequency
inverters, free wheeling and polarity protection
applications.
DESCRIPTION
ABSOLUTE RATINGS (limiting values, per diode)
MAIN PRODUCT CHARACTERISTICS
BYW51/F/G/FP/R-200Pulsetest:* tp=5ms,δ <2%tp= 380μs,δ <2% evaluate the conduction losses use the following equation:
P=0.65xIF(AV)+ 0.025xIF2 (RMS)
STATIC ELECTRICAL CHARACTERISTICS (Per diode)
RECOVERY CHARACTERISTICSWhen diodes1 and2 are used simultaneously:
ΔTc (diode1)= P(diode1)x Rth(j-c) (Per diode)+ P(diode2)x Rth(c)
THERMAL RESISTANCES
BYW51/F/G/FP/R-2000.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00
IM(A)
Fig.2: Peak current versusform factor (per diode). 25 50 75 100 125 1500
IF(av)(A)
Fig. 3-1: Average forward current versus ambient
temperature(δ= 0.5,D2 PAK, TO-220AB).
1E-3 1E-2 1E-1 1E+00
IM(A)
Fig. 4-1: Non repetitive surge peak forward current
versus overload duration(D2 PAK, TO-220AB) 1 2 3 4 5 6 7 8 9 10 11 12 130
PF(av)(W)
Fig.1: Average forward power dissipation versus
average forward current (per diode).
1E-3 1E-2 1E-1 1E+00
IM(A)
Fig.4-2: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AB). 25 50 75 100 125 1500
IF(av)(A)
Fig. 3-2: Average forward current versus
ambient temperature(δ= 0.5, ISOWATT220AB,
TO-220FPAB).
BYW51/F/G/FP/R-2001E-3 1E-2 1E-1 1E+00.1
K=[Zth(j-c)/Rth(j-c)]
Fig. 5-1: Relative variationof thermal impedance
junctionto case versus pulse duration (D2 PAK,
TO-220AB).
1E-2 1E-1 1E+0 1E+10.1
K=[Zth(j-c)/Rth(j-c)]
Fig. 5-2: Relative variationof thermal impedance
junction to case versus pulse duration
(ISOWATT220AB, TO-220FPAB).
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.1
IFM(A)
Fig. 6: Forward voltage drop versus forward
current (maximum values, per diode). 10 100 20010
C(pF)
Fig. 7: Junction capacitance versus reverse
voltage applied (typical values, per diode).
1E-3 1E-2 1E-1 1E+00
IM(A)
Fig. 4-3: Non repetitive surge peak forward current
versus overload duration (TO-220FPAB). 20 50 100 200 50010
Qrr(nC)
Fig.8: Reverse recovery charges versus dIF/dt
(per diode).
BYW51/F/G/FP/R-200 20 50 100 200 5001
IRM(A)
Fig.9: Peak reverse recovery current versus dIF/dt
(per diode). 25 50 75 100 125 1500.25
Qrr;IRM [Tj] / Qrr;IRM [Tj=125°C]
Fig. 10: Dynamic parameters versus junction
temperature. 5 10 15 20 25 30 35 400
Rth(j-a) (°C/W)
Fig. 11: Thermal resistance junctionto ambient
versus copper surface under tab (Epoxy printed
circuit board FR4, copper thickness: 35μm)2 PAK).
BYW51/F/G/FP/R-200
PACKAGE MECHANICAL DATATO-220AB (JEDEC compatible)
PACKAGE MECHANICAL DATA2 PAK