BT139-800 ,TriacsFeatures and benefitsHigh blocking voltage capability•• Planar passivated for voltage ruggedness an ..
BT139-800. ,TriacsApplicationsGeneral purpose motor controls•• General purpose switching4. Quick reference dataTable ..
BT139-800E ,Triacs sensitive gateGENERAL DESCRIPTION QUICK REFERENCE DATAPassivated, sensitive gate triacs in a SYMBOL PARAMETER ..
BT139-800F ,TriacsLimiting valuesTable 4.
BT139-800G ,TriacsGeneral descriptionPlanar passivated four quadrant triac in a SOT78 (TO-220AB) plastic package inte ..
BT139B-600 ,Triacsapplications requiring high BT139B- 600 800bidirectional transient and blocking BT139B- 600F 800Fvo ..
BZV55-C6V8 ,ZENER DIODESLIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134).SYMBOL PARAMETER CON ..
BZV55-C75 ,ZENER DIODESApplications General regulation functions1.4 Quick reference data Table 1. Quick reference dataSym ..
BZV55-C7V5 ,Voltage regulator diodesFEATURES DESCRIPTION• Total power dissipation: Low-power voltage regulator diodes in small hermetic ..
BZV55-C7V5 ,Voltage regulator diodesThermal characteristics Table 6.
BZV55-C8V2 ,Voltage regulator diodesThermal characteristics Table 6.
BZV55-C9V1 ,ZENER DIODESLimiting values Table 5.
BT139-500-BT139-500G-BT139-600.-BT139-600F-BT139-600G-BT139800-BT139-800-BT139-800.-BT139-800F-BT139-800G
Triacs
TO-220AB BT139-600
4Q Triac 27 September 2013 Product data sheet General descriptionPlanar passivated four quadrant triac in a SOT78 (TO-220AB) plastic package intendedfor use in applications requiring high bidirectional transient and blocking voltagecapability and high thermal cycling performance.
Features and benefits High blocking voltage capability• Planar passivated for voltage ruggedness and reliability• Less sensitive gate for high noise immunity• Triggering in all four quadrants
Applications General purpose motor controls• General purpose switching
Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max UnitVDRM repetitive peak off-state voltage - - 600 V
ITSM non-repetitive peak on-state current full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 155 A
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 99 °C; Fig. 1;
Fig. 2; Fig. 3 - 16 A
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 5 35 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 8 35 mA
VD = 12 V; IT = 0.1 A; T2- G-; 10 35 mA
IGT gate trigger current 22 70 mA
NXP Semiconductors BT139-600
4Q Triac Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol T1 main terminal 1 T2 main terminal 2 G gate T2 mounting base; mainterminal 22
TO-220AB (SOT78)sym051
Ordering information
Table 3. Ordering information
PackageType number
Name Description VersionBT139-600 TO-220AB plastic single-ended package; heatsink mounted; 1 mounting
hole; 3-lead TO-220AB
SOT78
NXP Semiconductors BT139-600
4Q Triac Limiting values
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max UnitVDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 99 °C; Fig. 1;
Fig. 2; Fig. 3 16 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 155 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 170 A2t I2t for fusing tp = 10 ms; SIN - 120 A2s
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT139-600
4Q Triacsurgeduration(s)10-2 10110-1
001aab090
IT(RMS)
(A)
f = 50 Hz; Tmb = 99 °C
Fig. 1. RMS on-state current as a function of surgeduration; maximum valuesTmb(°C)-50 1501000 50
001aab091
IT(RMS)
(A)
(1)
(1) Tmb = 99 °C
Fig. 2. RMS on-state current as a function of mountingbase temperature; maximum valuesIT(RMS)(A)0 2015105
001aab093
Ptot
(W)
Tmb(max)
(°C)
119=180
α = conduction angle a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values.
NXP Semiconductors BT139-600
4Q Triac001aab102
ITSM
(A)1 10310210 ITSMTj(initial)=25°C max
f = 50 Hz; n = number of cycles
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues001aab092 (ms)10-2 1021010-1 1
ITSM
(A) ITSMTj(initial)=25°C max
(2)
(1)
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT139-600
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unithalf cycle; Fig. 6 - - 1.7 K/WRth(j-mb) thermal resistance
from junction tomounting base full cycle; Fig. 6 - - 1.2 K/W
Rth(j-a) thermal resistancefrom junction to
ambient
in free air - 60 - K/W
001aab098
Zth(j-mb)
(K/W)
10-3(s)10-5 1 1010-110-210-4 10-3
(2)
(1)
(1) Unidirectional (half cycle)
(2) Bidirectional (full cycle)
Fig. 6. Transient thermal impedance from junction to mounting base as a function of pulse width
NXP Semiconductors BT139-600
4Q Triac Characteristics
Table 6. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 5 35 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 8 35 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 10 35 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 22 70 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 7 40 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 20 60 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 8 40 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 10 60 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 6 45 mA on-state voltage IT = 20 A; Tj = 25 °C; Fig. 10 - 1.2 1.6 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.25 0.4 - V off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristicsdVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; (VDM = 67%
of VDRM); exponential waveform; gate
open circuit
200 250 - V/µs
dVcom/dt rate of change of commutating voltage VD = 400 V; Tj = 95 °C; dIcom/dt = 7.2 A/
ms; IT = 16 A; gate open circuit 20 - V/µs
tgt gate-controlled turn-ontime ITM = 20 A; VD = 600 V; IG = 0.1 A; dIG/
dt = 5 A/µs 2 - µs