BT138X600E ,4Q TriacApplications• General purpose motor controlGeneral purpose switching•4. Quick reference dataTable 1 ..
BT138X-600E ,4Q Triac
BT138X-600F ,Triacsapplications requiring high bidirectional BT138X- 600 800transient and blocking voltage capability ..
BT138X-600F ,Triacs
BT138X800 ,TriacsPIN CONFIGURATION SYMBOLPIN DESCRIPTIONcase1 main terminal 1T2 T12 main terminal 23 gateG12 3case i ..
BT138X-800 ,Triacsapplications include motor V Repetitive peak off-state 600 800 VDRMcontrol, industrial and domestic ..
BZV55-C5V1 ,Voltage regulator diodesFEATURES DESCRIPTION• Total power dissipation: Low-power voltage regulator diodes in small hermetic ..
BZV55-C5V6 ,ZENER DIODESThermal characteristics Table 6.
BZV55C62 ,Voltage regulator diodesFeatures and benefits Non-repetitive peak reverse power Wide working voltage range: dissipation ..
BZV55-C62 ,Voltage regulator diodesFEATURES DESCRIPTION• Total power dissipation: Low-power voltage regulator diodes in small hermetic ..
BZV55-C62 ,Voltage regulator diodesLimiting values Table 5.
BZV55-C68 ,Voltage regulator diodes BZV55 seriesVoltage regulator diodesRev. 5 — 26 January 2011 Product data sheet1. Product profile1 ..
BT138X600E
4Q Triac
TO-220F BT138X-600E
4Q Triac 29 August 2013 Product data sheet General descriptionPlanar passivated sensitive gate four quadrant triac in a SOT186A (TO-220F) "full pack"plastic package intended for use in applications requiring high bidirectional transient andblocking voltage capability and high thermal cycling performance. Typical applicationsinclude motor control, industrial and domestic lighting, heating and static switching. Thissensitive gate "series E" triac is intended for gate triggering by low power drivers andmicrocontrollers.
Features and benefits Direct triggering from low power drivers and logic ICs• High blocking voltage capability• Isolated package• Planar passivated for voltage ruggedness and reliability• Sensitive gate• Triggering in all four quadrants
Applications General purpose motor control• General purpose switching
Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max UnitVDRM repetitive peak off-
state voltage - 600 V
ITSM non-repetitive peak on-
state current
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 95 A junction temperature - - 125 °C
IT(RMS) RMS on-state current full sine wave; Th ≤ 56 °C; Fig. 1; Fig. 2;
Fig. 3 - 12 A
Static characteristicsIGT gate trigger current VD = 12 V; IT = 0.1 A; T2+ G+; 2.5 10 mA
NXP Semiconductors BT138X-600E
4Q Triac
Symbol Parameter Conditions Min Typ Max UnitVD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 4 10 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 5 10 mA
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 11 25 mA
Dynamic characteristicsdVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; (VDM = 67%
of VDRM); exponential waveform; gate
open circuit 150 - V/µs
Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol T1 main terminal 1 T2 main terminal 2 G gate n.c. mounting base; isolated21
TO-220F (SOT186A)sym051
Ordering information
Table 3. Ordering information
PackageType number
Name Description VersionBT138X-600E TO-220F plastic single-ended package; isolated heatsink mounted; 1mounting hole; 3-lead TO-220 "full pack" SOT186A
NXP Semiconductors BT138X-600E
4Q Triac Limiting values
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max UnitVDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Th ≤ 56 °C; Fig. 1; Fig. 2;
Fig. 3 12 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 95 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 105 A2t I2 t for fusing tp = 10 ms; sine-wave pulse - 45 A2s
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT138X-600E
4Q TriacTh (°C)-50 1501000 50
003aaj939
IT(RMS)
(A)
56 °C
Fig. 1. RMS on-state current as a function of heatsink
temperature; maximum valuessurge duration (s)10-2 10110-1
003aaj941
IT(RMS)
(A)
f = 50 Hz; Th = 56 °C
Fig. 2. RMS on-state current as a function of surgeduration; maximum values003aaj943
Ptot
(W)
IT(RMS) (A)0 15126 93
conductionangle(degrees)
formfactora60901201802.82.21.91.57
Th(max)(°C)
α = 180°
α = conduction angle a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT138X-600E
4Q Triac003aaj944
100 10 102 103
number of cycles (n)
ITSM
(A)
ITSM
Tj(init) = 25°C max
1/f
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues003aaj945
10
102
103-5 10-4 10-3 10-2 10-1
tp (s)
ITSM
(A)
ITSM
Tj(init) = 25 °C max
(1)
(2)
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT138X-600E
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unitfull or half cycle; with heatsink
compound; Fig. 6 - 4 K/WRth(j-h) thermal resistance
from junction toheatsink full or half cycle; without heatsink
compound; Fig. 6 - 5.5 K/W
Rth(j-a) thermal resistancefrom junction to
ambient
in free air - 55 - K/W
003aaj342
Zth(j-h)
(K/W)
tp (s)10-5 1 1010-110-210-4 10-3
(1)(2)
(3)(4)
(1) Unidirectional (half cycle) without heatsink compound
(2) Unidirectional (half cycle) with heatsink compound(3) Bidirectional (full cycle) without heatsink compound
(4) Bidirectional (full cycle) with heatsink compound
Fig. 6. Transient thermal impedance from junction to heatsink as a function of pulse duration Max Unit 2500 V - pF
NXP Semiconductors BT138X-600E
4Q Triac
10. Characteristics
Table 7. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 2.5 10 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 4 10 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 5 10 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 11 25 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 - 30 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 - 40 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 - 30 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 - 40 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - - 30 mA on-state voltage IT = 15 A; Tj = 25 °C; Fig. 10 - 1.4 1.65 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 600 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.25 0.4 - V off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristicsdVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; (VDM = 67%
of VDRM); exponential waveform; gate
open circuit 150 - V/µs
tgt gate-controlled turn-ontime ITM = 16 A; VD = 600 V; IG = 0.2 A; dIG/
dt = 5 A/µs 2 - µs