BT138-600D ,4Q TriacApplications• General purpose phase controlGeneral purpose switching•4. Quick reference dataTable 1 ..
BT138-600E ,Triacs sensitive gatePIN CONFIGURATION SYMBOLPIN DESCRIPTIONtab1 main terminal 1T2 T12 main terminal 23 gateG123tab main ..
BT138-600F ,TriacsPIN CONFIGURATION SYMBOLPIN DESCRIPTIONtab1 main terminal 1T2 T12 main terminal 23 gateG123tab main ..
BT138-600G ,4Q TriacGENERAL DESCRIPTION QUICK REFERENCE DATAGlass passivated triacs in a plastic SYMBOL PARAMETER MAX. ..
BT138-600G ,4Q TriacApplications• General purpose motor controlGeneral purpose switching•4. Quick reference dataTable 1 ..
BT138-800 ,TriacsGENERAL DESCRIPTION QUICK REFERENCE DATAGlass passivated triacs in a plastic SYMBOL PARAMETER MAX. ..
bzv55-c3v9 ,Voltage regulator diodesThermal characteristics Table 6.
BZV55C43 ,ZENER DIODESLimiting values Table 5.
BZV55-C43 ,ZENER DIODESLIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134).SYMBOL PARAMETER CON ..
BZV55-C43 ,ZENER DIODESGeneral descriptionLow-power voltage regulator diodes in small hermetically sealed glass SOD80C Sur ..
BZV55-C47 ,Voltage regulator diodesGeneral descriptionLow-power voltage regulator diodes in small hermetically sealed glass SOD80C Sur ..
BZV55-C4V3 ,Voltage regulator diodesGeneral descriptionLow-power voltage regulator diodes in small hermetically sealed glass SOD80C Sur ..
BT138-600D
4Q Triac
TO-220AB BT138-600D
4Q Triac 30 August 2013 Product data sheet General descriptionPlanar passivated very sensitive gate four quadrant triac in a SOT78 (TO-220AB) plastic package intended for use in general purpose bidirectional switching and phasecontrol applications, where high sensitivity is required in all four quadrants. This verysensitive gate "series D" triac is intended to be interfaced directly to microcontrollers,logic integrated circuits and other low power gate trigger circuits.
Features and benefits Direct triggering from low power drivers and logic ICs• High blocking voltage capability• Planar passivated for voltage ruggedness and reliability• Triggering in all four quadrants• Very sensitive gate
Applications General purpose phase control• General purpose switching
Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max UnitVDRM repetitive peak off-
state voltage - 600 V
ITSM non-repetitive peak on-
state current
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 95 A junction temperature - - 125 °C
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 99 °C; Fig. 1;
Fig. 2; Fig. 3 - 12 A
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 1.3 5 mAIGT gate trigger current 2.8 5 mA
NXP Semiconductors BT138-600D
4Q Triac
Symbol Parameter Conditions Min Typ Max UnitVD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 3.2 5 mA
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 5.5 10 mA
Dynamic characteristicsdVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; (VDM = 67%
of VDRM); exponential waveform; gate
open circuit 50 - V/µs
Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol T1 main terminal 1 T2 main terminal 2 G gate T2 mounting base; mainterminal 22
TO-220AB (SOT78)sym051
Ordering information
Table 3. Ordering information
PackageType number
Name Description VersionBT138-600D TO-220AB plastic single-ended package; heatsink mounted; 1 mounting
hole; 3-lead TO-220AB
SOT78
NXP Semiconductors BT138-600D
4Q Triac Limiting values
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max UnitVDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 99 °C; Fig. 1;
Fig. 2; Fig. 3 12 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 95 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 105 A2t I2 t for fusing tp = 10 ms; sine-wave pulse - 45 A2s
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 2 A
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT138-600D
4Q TriacTmb (°C)-50 1501000 50
003aaj938
IT(RMS)
(A)
99 °C
Fig. 1. RMS on-state current as a function of mounting
base temperature; maximum valuessurge duration (s)10-2 10110-1
003aaj940
IT(RMS)
(A)
f = 50 Hz; Tmb = 99 °C
Fig. 2. RMS on-state current as a function of surgeduration; maximum values003aaj942
Ptot
(W)
IT(RMS) (A)0 15126 93
conductionangle(degrees)
formfactora60901201802.82.21.91.57
Tmb(max)(°C)
α = 180°
α = conduction angle a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT138-600D
4Q Triac003aaj944
100 10 102 103
number of cycles (n)
ITSM
(A)
ITSM
Tj(init) = 25°C max
1/f
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues003aaj945
10
102
103-5 10-4 10-3 10-2 10-1
tp (s)
ITSM
(A)
ITSM
Tj(init) = 25 °C max
(1)
(2)
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT138-600D
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unitfull cycle; Fig. 6 - - 1.5 K/WRth(j-mb) thermal resistance
from junction tomounting base half cycle; Fig. 6 - - 2 K/W
Rth(j-a) thermal resistancefrom junction to
ambient
in free air - 60 - K/W
003aaj343
Zth(j-mb)(K/W)
tp (s)10-5 1 1010-110-210-4 10-3
(1)
(2)
(1) Unidirectional (half cycle)
(2) Bidirectional (full cycle)
Fig. 6. Transient thermal impedance from junction to mounting base as a function of pulse duration
NXP Semiconductors BT138-600D
4Q Triac Characteristics
Table 6. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 1.3 5 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 2.8 5 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 3.2 5 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 5.5 10 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 - 15 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 - 20 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 - 15 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 - 20 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - - 10 mA on-state voltage IT = 15 A; Tj = 25 °C; Fig. 10 - 1.4 1.65 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.25 0.4 - V off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristicsdVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; (VDM = 67%
of VDRM); exponential waveform; gate
open circuit 50 - V/µs
tgt gate-controlled turn-ontime ITM = 16 A; VD = 600 V; IG = 0.1 A; dIG/
dt = 5 A/µs 2 - µs