BT137X800 ,4Q TriacApplicationsGeneral purpose motor control•• General purpose switching4. Quick reference dataTable 1 ..
BT137X-800E ,Triacs sensitive gateGENERAL DESCRIPTION QUICK REFERENCE DATAPassivated, sensitive gate triacs in a SYMBOL PARAMETER MA ..
BT138 ,Triacs sensitive gateapplications requiring high BT138- 500 600 800bidirectional transient and blocking BT138- 500F 600F ..
BT138-500 ,Triacsapplications requiring high BT138- 500 600 800bidirectional transient and blocking BT138- 500F 600F ..
BT138-600 ,4Q Triacapplications include motor control, voltagesindustrial and domestic lighting, I RMS on-state curren ..
BT138-600 ,4Q Triacapplications include motor control, voltagesindustrial and domestic lighting, I RMS on-state curren ..
BZV55-C3V6 ,Voltage regulator diodesLIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134).SYMBOL PARAMETER CON ..
BZV55C3V9 ,Voltage regulator diodesDISCRETE SEMICONDUCTORSDATA SHEET1/3 page (Datasheet)M3D054BZV55 seriesVoltage regulator diodes1999 ..
BZV55-C3V9 ,Voltage regulator diodesAPPLICATIONS• Low-power voltage stabilizers orThe cathode is indicated by a yellow band.voltage ref ..
bzv55-c3v9 ,Voltage regulator diodesThermal characteristics Table 6.
BZV55C43 ,ZENER DIODESLimiting values Table 5.
BZV55-C43 ,ZENER DIODESLIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134).SYMBOL PARAMETER CON ..
BT137X800
4Q Triac
TO-220F BT137X-800
4Q Triac 9 October 2013 Product data sheet General descriptionPlanar passivated four quadrant triac in a SOT186A "full pack" plastic package intendedfor use in general purpose bidirectional switching and phase control applications.
Features and benefits High blocking voltage capability• Isolated package• Less sensitive gate for improved noise immunity• Planar passivated for voltage ruggedness and reliability• Triggering in all four quadrants
Applications General purpose motor control• General purpose switching
Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max UnitVDRM repetitive peak off-state voltage - - 800 V
ITSM non-repetitive peak on-state current full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 65 A
IT(RMS) RMS on-state current full sine wave; Th ≤ 73 °C; Fig. 1; Fig. 2;
Fig. 3 - 8 A
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 5 35 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 8 35 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 11 35 mA
IGT gate trigger current 30 70 mA
NXP Semiconductors BT137X-800
4Q Triac Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol T1 main terminal 1 T2 main terminal 2 G gate n.c. mounting base; isolated21
TO-220F (SOT186A)sym051
Ordering information
Table 3. Ordering information
PackageType number
Name Description VersionBT137X-800 TO-220F plastic single-ended package; isolated heatsink mounted; 1mounting hole; 3-lead TO-220 "full pack" SOT186A
BT137X-800/L02 TO-220F plastic single-ended package; isolated heatsink mounted; 1
mounting hole; 3-lead TO-220 "full pack"
SOT186A
NXP Semiconductors BT137X-800
4Q Triac Limiting values
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max UnitVDRM repetitive peak off-state voltage - 800 V
IT(RMS) RMS on-state current full sine wave; Th ≤ 73 °C; Fig. 1; Fig. 2;
Fig. 3 8 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 65 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 71 A2t I2 t for fusing tp = 10 ms; SIN - 21 A2s
IT = 12 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 12 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 12 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 12 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT137X-800
4Q Triacsurgeduration(s)10-2 10110-1
003aaa970
IT(RMS)
(A)
f = 50 Hz; Th = 73 °C
Fig. 1. RMS on-state current as a function of surge
duration; maximum values (°C)-50 1501000 50
003aaa969
IT(RMS)°C(A)
Fig. 2. RMS on-state current as a function of heatsink
temperature; maximum values003aae690
Ptot
(W)
IT(RMS)(A)0 1084 62
conductionangle(degrees)
formfactora3060901201802.82.21.91.57
α=180°
120°
90°
60°
30°
α = conduction angle a = form factor = IT(RMS)/IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT137X-800
4Q Triac003aae693
ITSM
(A)
numberof cycles1 10410310 102
ITSM
Tj(init)=25°C max
1/f
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues003aae691
10-5 10-4 10-3 10-2 10-1
ITSM
Tj(init)=25°C max
(1)
(2)
tp(s)
ITSM
(A)
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT137X-800
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unitfull or half cycle; without heatsink
compound; Fig. 6 - 6.5 K/WRth(j-h) thermal resistance
from junction toheatsink full or half cycle; with heatsink
compound; Fig. 6 - 4.5 K/W
Rth(j-a) thermal resistancefrom junction to
ambient
in free air - 55 - K/W
003aaf915
Zth(j-h)
(K/W)
10-3(s)10-5 1 1010-110-210-4 10-3
(1)(2)
(3)(4)
(1) Unidirectional (half cycle) without heatsink compound
(2) Unidirectional (half cycle) with heatsink compound(3) Bidirectional (full cycle) without heatsink compound
(4) Bidirectional (full cycle) with heatsink compound
Fig. 6. Transient thermal impedance from junction to heatsink as a function of pulse duration Max Unit 2500 V - pF
NXP Semiconductors BT137X-800
4Q Triac
10. Characteristics
Table 7. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 5 35 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 8 35 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 11 35 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 30 70 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 7 30 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 16 45 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 5 30 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 7 45 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 5 20 mA on-state voltage IT = 10 A; Tj = 25 °C; Fig. 10 - 1.3 1.65 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.25 0.4 - V off-state current VD = 800 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristicsdVD/dt rate of rise of off-state
voltage
VDM = 536 V; Tj = 125 °C; (VDM = 67%
of VDRM); exponential waveform; gate
open circuit
100 250 - V/µs
dVcom/dt rate of change of commutating voltage VD = 400 V; Tj = 95 °C; dIcom/dt = 3.6 A/
ms; IT = 8 A 20 - V/µs
tgt gate-controlled turn-ontime ITM = 12 A; VD = 800 V; IG = 0.1 A; dIG/
dt = 5 A/µs 2 - µs