BT136X-600D ,4Q TriacApplications• General purpose motor controlGeneral purpose switching•4. Quick reference dataTable 1 ..
BT136X-600D ,4Q Triac
BT136X600E ,4Q TriacApplicationsGeneral purpose motor control•• General purpose switching4. Quick reference dataTable 1 ..
BT136X-600E ,4Q TriacFeatures and benefits• Direct triggering from low power drivers and logic ICsHigh blocking voltage ..
BT137-500E ,Triacs sensitive gate
BT137-600G ,Triacs
BZV55-C16 ,Voltage regulator diodesFEATURES DESCRIPTION• Total power dissipation: Low-power voltage regulator diodes in small hermetic ..
BZV55C18 ,Voltage regulator diodesLIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134).SYMBOL PARAMETER CON ..
BZV55-C18 ,Voltage regulator diodesLimiting values Table 5.
BZV55-C18 ,Voltage regulator diodesFeatures and benefits Non-repetitive peak reverse power Wide working voltage range: dissipation ..
BZV55-C20 ,Voltage regulator diodesFEATURES DESCRIPTION• Total power dissipation: Low-power voltage regulator diodes in small hermetic ..
BZV55-C22 ,Voltage regulator diodesGeneral descriptionLow-power voltage regulator diodes in small hermetically sealed glass SOD80C Sur ..
BT136X-600D
4Q Triac
TO-220F BT136X-600D
4Q Triac 23 October 2013 Product data sheet General descriptionPlanar passivated very sensitive gate four quadrant triac in a SOT186A "full pack" plastic package intended for use in general purpose bidirectional switching and phasecontrol applications, where high sensitivity is required in all four quadrants. This verysensitive gate "series D" triac is intended to be interfaced directly to microcontrollers,logic integrated circuits and other low power gate trigger circuits.
Features and benefits Direct triggering from low power drivers and logic ICs• High blocking voltage capability• Isolated package• Low holding current for small load currents and lowest EMI at commutation• Planar passivated for voltage ruggedness and reliability• Triggering in all four quadrants• Very sensitive gate
Applications General purpose motor control• General purpose switching
Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max UnitVDRM repetitive peak off-
state voltage - 600 V
ITSM non-repetitive peak on-
state current
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 25 A
IT(RMS) RMS on-state current full sine wave; Th ≤ 92 °C; Fig. 1; Fig. 2;
Fig. 3 - 4 A
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 2 5 mAIGT gate trigger current 2.5 5 mA
NXP Semiconductors BT136X-600D
4Q Triac
Symbol Parameter Conditions Min Typ Max UnitVD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 2.5 5 mA
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 5 10 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 1.2 10 mA
Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol T1 main terminal 1 T2 main terminal 2 G gate n.c. mounting base; isolated21
TO-220F (SOT186A)sym051
Ordering information
Table 3. Ordering information
PackageType number
Name Description VersionBT136X-600D TO-220F plastic single-ended package; isolated heatsink mounted; 1mounting hole; 3-lead TO-220 "full pack" SOT186A
NXP Semiconductors BT136X-600D
4Q Triac Limiting values
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max UnitVDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Th ≤ 92 °C; Fig. 1; Fig. 2;
Fig. 3 4 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 25 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 27 A2t I2 t for fusing tp = 10 ms; SIN - 3.1 A2s
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT136X-600D
4Q Triacaaa-009685IT(RMS)
(A)
surge duration (s)10-2 10110-1
f = 50 Hz; Th = 92 °C
Fig. 1. RMS on-state current as a function of surgeduration; maximum valuesTh (°C)-50 1501000 50
aaa-009556
IT(RMS)(A)
Fig. 2. RMS on-state current as a function of heatsinktemperature; maximum values003aae827
Ptot
(W)
IT(RMS) (A)0 542 31
conductionangle(degrees)
formfactora60901201802.82.21.91.57 α= 180°
120°
90°
60°
30°
α = conduction angle
a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT136X-600D
4Q Triac003aae829
tp (s)10-5 10-110-210-4 10-3
ITSM(A)
ITSM
Tj(init) = 25 °C max
(1)
(2)
tp ≤ 20 ms
(1) dIT/dt limit
(2) T2- G+ quadrant limit
Fig. 4. Non-repetitive peak on-state current as a function of pulse width; maximum values003aae831ITSM(A)
number of cycles1 10410310 102
ITSM
Tj(init) = 25 °C max
1/f
f = 50 Hz
NXP Semiconductors BT136X-600D
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unitfull or half cycle; with heatsink
compound; Fig. 6 - 5.5 K/WRth(j-h) thermal resistance
from junction toheatsink full or half cycle; without heatsink
compound; Fig. 6 - 7.2 K/W
Rth(j-a) thermal resistancefrom junction to
ambient
in free air - 55 - K/W
aaa-009605
tp (s)10-5 1 1010-110-210-4 10-3
Zth(j-h)
(K/W)
(2)
(4)
(3)
(1) Unidirectional (half cycle) without heatsink compound
(2) Bidirectional (full cycle) with heatsink compound(3) Unidirectional (half cycle) with heatsink compound
(4) Bidirectional (full cycle) without heatsink compound
Fig. 6. Transient thermal impedance from junction to heatsink as a function of pulse width Max Unit 2500 V - pF
NXP Semiconductors BT136X-600D
4Q Triac
10. Characteristics
Table 7. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 2 5 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 2.5 5 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 2.5 5 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 5 10 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 1.6 10 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 1.2 15 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 2.2 10 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 1.2 15 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 1.2 10 mA on-state voltage IT = 5 A; Tj = 25 °C; Fig. 10 - 1.4 1.7 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.25 0.4 - V off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristicsdVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; RGK = 1 kΩ;
(VDM = 67% of VDRM); exponential
waveform; gate open circuit 5 - V/µs
tgt gate-controlled turn-ontime ITM = 6 A; VD = 600 V; IG = 0.1 A; dIG/
dt = 5 A/µs 2 - µs