IC Phoenix
 
Home ›  BB29 > BT131-600,4Q Triac
BT131-600 Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
BT131-600 |BT131600N/a50avai4Q Triac


BT131-600 ,4Q TriacGeneral descriptionPlanar passivated very sensitive gate four quadrant triac in a SOT54 plastic pac ..
BT131-600E ,BT131 series D and E; Triacs logic levelapplications. These BT131- 600E 800Edevices are intended to be interfaced V Repetitive peak off-sta ..
BT131-800 ,BT131 series; Triacs logic level
BT131W ,Triacs logic level
BT131W ,Triacs logic level
BT131W-600 ,4Q TriacApplications• General purpose low power motor controlGeneral purpose switching and phase control•4. ..
BZV49-C9V1 ,Voltage regulator diodesDISCRETE SEMICONDUCTORSDATA SHEETbook, halfpageM3D109BZV49 seriesVoltage regulator diodes1999 May 1 ..
BZV55-B10 ,ZENER DIODESDISCRETE SEMICONDUCTORSDATA SHEET1/3 page (Datasheet)M3D054BZV55 seriesVoltage regulator diodes1999 ..
BZV55-B10 ,ZENER DIODESGeneral descriptionLow-power voltage regulator diodes in small hermetically sealed glass SOD80C Sur ..
BZV55-B11 ,Voltage regulator diodesThermal characteristics Table 6.
BZV55-B12 ,Voltage regulator diodesLimiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).Symbol Parameter C ..
BZV55-B13 ,ZENER DIODESLimiting values Table 5.


BT131-600
4Q Triac
-92 BT131-600
4Q Triac 20 August 2013 Product data sheet General description

Planar passivated very sensitive gate four quadrant triac in a SOT54 plastic packageintended for interfacing with low power drivers including microcontrollers. Features and benefits Direct interfacing to logic level ICs• Direct interfacing to low power gate drive circuits and microcontrollers• High blocking voltage capability• Planar passivated for voltage ruggedness and reliability• Triggering in all four quadrants• Very sensitive gate Applications Air conditioner indoor fan control• General purpose motor control• General purpose switching Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit

VDRM repetitive peak off-state voltage - - 600 V
ITSM non-repetitive peak on-state current full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 12.5 A junction temperature - - 125 °C
IT(RMS) RMS on-state current full sine wave; Tlead ≤ 51.2 °C; Fig. 1;
Fig. 2; Fig. 3 - 1 A
VD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 0.4 3 mAIGT gate trigger current
VD = 12 V; IT = 0.1 A; T2+ G-; 1.3 3 mA
NXP Semiconductors BT131-600
4Q Triac
Symbol Parameter Conditions Min Typ Max Unit

VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 1.4 3 mA
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 3.8 7 mA
Dynamic characteristics

dVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; RGT1 = 1 kΩ;
(VDM = 67% of VDRM); exponential
waveform; Fig. 12 20 - V/µs Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol
T2 main terminal 2 G gate T1 main terminal 123
TO-92 (SOT54)

sym051 Ordering information
Table 3. Ordering information
PackageType number
Name Description Version

BT131-600 TO-92 plastic single-ended leaded (through hole) package; 3 leads SOT54
BT131-600/DG TO-92 plastic single-ended leaded (through hole) package; 3 leads SOT54
NXP Semiconductors BT131-600
4Q Triac Limiting values
Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit

VDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Tlead ≤ 51.2 °C; Fig. 1;
Fig. 2; Fig. 3 1 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 12.5 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 13.7 A2t I2 t for fusing tp = 10 ms; sine-wave pulse - 0.78 A2s
IT = 1.5 A; IG = 20 mA; dIG/dt = 0.2 A/
µs; T2+ G+ 50 A/µs
IT = 1.5 A; IG = 20 mA; dIG/dt = 0.2 A/
µs; T2+ G- 50 A/µs
IT = 1.5 A; IG = 20 mA; dIG/dt = 0.2 A/
µs; T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 1.5 A; IG = 20 mA; dIG/dt = 0.2 A/
µs; T2- G+ 10 A/µs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.1 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT131-600
4Q Triac

003aab039
-50 0 50 100 150Tlead(°C)
IT(RMS)
(A)
51.2°C
Tlead = 51.2 °C
Fig. 1. RMS on-state current as a function of leadtemperature; maximum values

003aab042
IT(RMS)(A)
surge duration(s)10-2 10110-1
f = 50 Hz; Tlead = 51.2 °C
Fig. 2. RMS on-state current as a function of surgeduration; maximum values

003aab038
1.5 0.2 0.4 0.6 0.8 1 1.2IT(RMS)(A)
Ptot
(W)
Tlead(max)
(°C)
30°
60°
90°
120° =180°α
α = conduction angle
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT131-600
4Q Triac

003aab041
ITSM(A)1 10310210
ITSM=25°C max
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues

003aab040(s)10-5 10-110-210-4 10-3
ITSM(A)
(1)
(2)
ITSM=25°C max
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT131-600
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit

full cycle; Fig. 6 - - 60 K/WRth(j-lead) thermal resistance
from junction to lead half cycle; Fig. 6 - - 80 K/W
Rth(j-a) thermal resistancefrom junction to
ambient
printed circuit board mounted: leadlength = 4 mm - 150 - K/W
003aab045
Zth(j-lead)(K/W)
10-2(s)10-5 1 1010-110-210-4 10-3
(1)
(2)
(1) Unidirectional (half cycle)(2) Bidirectional (full cycle)
Fig. 6. Transient thermal impedance from junction to lead as a function of pulse width
NXP Semiconductors BT131-600
4Q Triac Characteristics
Table 6. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristics

VD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 0.4 3 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 1.3 3 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 1.4 3 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 3.8 7 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 1.2 5 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 4 8 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 1 5 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 2.5 8 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 1.3 5 mA on-state voltage IT = 1.4 A; Tj = 25 °C; Fig. 10 - 1.2 1.5 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.2 0.3 - V off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristics

dVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; RGT1 = 1 kΩ;
(VDM = 67% of VDRM); exponential
waveform; Fig. 12 20 - V/µs
dVcom/dt rate of change of commutating voltage VD = 400 V; Tj = 125 °C; dIcom/
dt = 0.5 A/ms; IT = 1 A; gate open
circuit - - V/µs
tgt gate-controlled turn-on
time
ITM = 1.5 A; VD = 600 V; IG = 0.1 A; dIG/
dt = 5 A/µs 2 - µs
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED