BT1308W-600D ,4Q TriacApplications• AC Fan controllerGeneral purpose low power phase control•• General purpose low power ..
BT1308W-600D ,4Q TriacFeatures and benefitsDirect interfacing to logic level ICs•• Direct interfacing to low power gate d ..
BT131-600 ,4Q TriacGeneral descriptionPlanar passivated very sensitive gate four quadrant triac in a SOT54 plastic pac ..
BT131-600E ,BT131 series D and E; Triacs logic levelapplications. These BT131- 600E 800Edevices are intended to be interfaced V Repetitive peak off-sta ..
BT131-800 ,BT131 series; Triacs logic level
BT131W ,Triacs logic level
BZV49-C7V5 ,Voltage regulator diodesAPPLICATIONS• General regulation functions.1 2DESCRIPTIONMedium-power voltage regulatordiodes in a ..
BZV49-C8V2 ,Voltage regulator diodesLIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134).SYMBOL PARAMETER CON ..
BZV49-C9V1 ,Voltage regulator diodesDISCRETE SEMICONDUCTORSDATA SHEETbook, halfpageM3D109BZV49 seriesVoltage regulator diodes1999 May 1 ..
BZV55-B10 ,ZENER DIODESDISCRETE SEMICONDUCTORSDATA SHEET1/3 page (Datasheet)M3D054BZV55 seriesVoltage regulator diodes1999 ..
BZV55-B10 ,ZENER DIODESGeneral descriptionLow-power voltage regulator diodes in small hermetically sealed glass SOD80C Sur ..
BZV55-B11 ,Voltage regulator diodesThermal characteristics Table 6.
BT1308W-600D
4Q Triac
BT1308W-600D4Q Triac 20 August 2013 Product data sheet General descriptionPlanar passivated four quadrant triac in a SOT223 surface-mountable plastic package.This very sensitive gate "series D" triac is intended to be interfaced directly to microcontrollers, logic integrated circuits and other low power gate trigger circuits.
Features and benefits Direct interfacing to logic level ICs• Direct interfacing to low power gate drivers and microcontrollers• High blocking voltage capability• Planar passivated for voltage ruggedness and reliability• Surface-mountable package• Triggering in all four quadrants• Very sensitive gate
Applications AC Fan controller• General purpose low power phase control• General purpose low power switching
Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max UnitVDRM repetitive peak off-state voltage - - 600 V
ITSM non-repetitive peak on-state current full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 9 A
Fig. 2; Fig. 3 - 0.8 A
Static characteristicsVD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 9 1 5 mAIGT gate trigger current 2 5 mA
NXP Semiconductors BT1308W-600D
4Q Triac
Symbol Parameter Conditions Min Typ Max UnitVD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 9 2 5 mA
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 9 4 7 mA
Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol T1 main terminal 1 T2 main terminal 2 G gate T2 main terminal 2 1 32
SC-73 (SOT223)sym051
Ordering information
Table 3. Ordering information
PackageType number
Name Description VersionBT1308W-600D SC-73 plastic surface-mounted package with increased heatsink; 4
leads
SOT223
NXP Semiconductors BT1308W-600D
4Q Triac Limiting values
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max UnitVDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Tsp ≤ 107 °C; Fig. 1;
Fig. 2; Fig. 3 0.8 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 9 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 10 A2t I2t for fusing tp = 10 ms; SIN - 0.32 A2s
IT = 1 A; IG = 20 mA; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 1 A; IG = 20 mA; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 1 A; IG = 20 mA; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 1 A; IG = 20 mA; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 1 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.1 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT1308W-600D
4Q Triac003aab489-2 10-1 1 10surge duration(s)
IT(RMS)
(A)
f = 50 Hz; Tsp = 107 °C
Fig. 1. RMS on-state current as a function of surgeduration; maximum values003aab487
-50 0 50 100 150Tsp (°C)
IT(RMS)
(A)
Fig. 2. RMS on-state current as a function of solder
point temperature; maximum values003aac209
1.2 0.2 0.4 0.6 0.8 1IT(RMS)(A)
Ptot
(W)
α=180°
120°
90°
60°
30°
conductionangle(degrees)
formfactora90120
α = conduction angle a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT1308W-600D
4Q Triac003aac207 10 102 103
numberof cycles
ITSM
(A)
ITSM
Tj(init)=25°C max
1/f
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues003aac20823-5 10-4 10-3 10-2 10-1(s)
ITSM
(A)
ITSM
Tj(init)=25°Cmax
(1)(2)
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT1308W-600D
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max UnitRth(j-sp) thermal resistance
from junction to solderpoint
full cycle; Fig. 8 - - 15 K/W
full cycle; for minimum footprint; Fig. 6 - 156 - K/WRth(j-a) thermal resistancefrom junction to
ambient full cycle; for pad area; Fig. 7 - 70 - K/W
001aab508
3.8min
1.5min
1.5min(3×)
1.5min
All dimensions are in mm
Fig. 6. Minimum footprint SOT223 001aab509
All dimensions are in mm
Printed circuit board:
NXP Semiconductors BT1308W-600D
4Q Triac003aac210-2-12-5 10-4 10-3 10-2 1 10tp(s)
Zth(j-sp)
(K/W)-1
Fig. 8. Transient thermal impedance from junction to solder point as a junction of pulse width