AD8627AKS-REEL7 ,Precision Low Power Single-Supply JFET AmplifierApplications for the AD862x include photodiode transimpedance amplification, ATE reference level dr ..
AD8627AKSZ-REEL7 , Precision Low Power Single-Supply JFET Amplifiers
AD8627AR ,Precision Low Power Single-Supply JFET AmplifierFEATURES PIN CONFIGURATIONS SC70 package 8-Lead SOIC 5-Lead SC70(R-8 Suffix) (KS Suffix)Very low IB ..
AD8628AR ,Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Low Noise Operational AmplifierGENERAL DESCRIPTION AD8628 This new family of amplifiers has ultra-low offset, drift and bias curre ..
AD8628AR-REEL7 ,Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational AmplifierGENERAL DESCRIPTION This new breed of amplifier has ultralow offset, drift, and bias With an offset ..
AD8628ART ,Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Low Noise Operational AmplifierFEATURES maximize SNR. Lowest auto-zero amplifier noise Low Offset Voltage: 5 µV The AD8628 famil ..
ADS1232 ,Ultra Low-Noise, 24-Bit Analog-to-Digital ConverterMAXIMUM RATINGS(1)over operating free-air temperature range (unless otherwise noted)ADS1232, ADS123 ..
ADS1232IPW ,24-Bit, Ultra Low-Noise Analog-to-Digital Converter 24-TSSOP -40 to 105Maximum Ratings may cause permanent damage to the device. These are stress ratingsonly, and functio ..
ADS1232IPWG4 ,24-Bit, Ultra Low-Noise Analog-to-Digital Converter 24-TSSOP -40 to 105FEATURES DESCRIPTION2• Complete Front-End for Bridge SensorsThe ADS1232 and ADS1234 are precision 2 ..
ADS1232IPWR ,24-Bit, Ultra Low-Noise Analog-to-Digital Converter 24-TSSOP -40 to 105SBAS350F–JUNE 2005–REVISED FEBRUARY 2008This integrated circuit can be damaged by ESD. Texas Instru ..
ADS1234 ,Ultra Low-Noise, 24-Bit Analog-to-Digital Converterfeatures of• Supply Range: 2.7V to 5.3Vthe ADS1232/4 are operated through simplepin-driven control. ..
ADS1234IPW ,24-Bit, Ultra Low-Noise Analog-to-Digital Converter 28-TSSOP -40 to 105FEATURES DESCRIPTION2• Complete Front-End for Bridge SensorsThe ADS1232 and ADS1234 are precision 2 ..
AD8626AR-AD8627AKS-R2-AD8627AKS-REEL7-AD8627AR
Precision Low Power Single-Supply JFET Amplifier
Precision Low Power
Single-Supply JFET Amplifier
Rev. B
FEATURES
SC70 package
Very low IB: 1 pA max
Single-supply operation: 5 V to 26 V
Dual-supply operation: ±2.5 V to ±13 V
Rail-to-rail output
Low supply current: 630 µA/amp typ
Low offset voltage: 500 µV max
Unity gain stable
No phase reversal
APPLICATIONS
Photodiode amplifiers
ATE
Line-powered/battery-powered instrumentation
Industrial controls
Automotive sensors
Precision filters
Audio
GENERAL DESCRIPTION The AD862x is a precision JFET input amplifier. It features
true single-supply operation, low power consumption, and
rail-to-rail output. The outputs remain stable with capacitive
loads of over 500 pF; the supply current is less than 630 µA/amp.
Applications for the AD862x include photodiode transimpedance
amplification, ATE reference level drivers, battery management,
both line powered and portable instrumentation, and remote
sensor signal conditioning including automotive sensors.
The AD862x’s ability to swing nearly rail-to-rail at the input
and rail-to-rail at the output enables it to be used to buffer
CMOS DACs, ASICs, and other wide output swing devices in
single-supply systems.
The 5 MHz bandwidth and low offset are ideal for precision
filters.
The AD862x is fully specified over the industrial temperature
range. (–40° to +85°) The AD8627 is available in both 5-lead
SC70 and 8-lead SOIC surface-mount packages. The SC70
packaged parts are available in tape and reel only. The AD8626
is available in an MSOP package.
PIN CONFIGURATIONS 03023-B
-001
OUT A
+IN
OUT A
–IN AOUT B
+IN A–IN B+IN B
8-Lead SOIC(R-8 Suffix)OUT A
OUT B–IN A
–IN B+IN A
+IN BV–
8-Lead MSOP(RM-Suffix)
OUT A
OUT B
OUT DOUT A
–IN D–IN A
+IN D+IN AV+
+IN C+IN B
–IN C–IN B
OUT COUT B
14-Lead TSSOP(RU-Suffix)Figure 1.
TABLE OF CONTENTS AD8627/AD8626/AD8625–Specifications...................................3
Electrical Characteristics.............................................................3
Electrical Characteristics.............................................................4
Absolute Maximum Ratings............................................................5
Typical Performance Characteristics–
AD8627/AD8626/AD8625..............................................................6
Applications.....................................................................................13
Minimizing Input Current........................................................15
Photodiode Preamplifier Application......................................15
Output Amplifier for Digital-to-Analog Converters.............15
Eight-Pole Sallen Key Low-Pass Filter.....................................16
Outline Dimensions.......................................................................18
Ordering Guide..........................................................................19
REVISION HISTORY
1/04—Data sheet changed from Rev. A to Rev. B Change to General Description.........................................................1
Change to Figure 10............................................................................7
Change to Figure13.............................................................................7
Change to Figure 37..........................................................................11
Changes to Figure 38.........................................................................12
Change to Output Amplifier for DACs section.............................15
Updated Outline Dimensions..........................................................19
10/03—Data sheet changed from Rev. 0 to Rev. A Addition of two new parts…………………………………….Universal
Change to General Description………………………………………....1
Changes to Pin Configurations………………….......................................1
Change to Specifications table…………………………………………..3
Changes to Figure 31…………………………….......................................10
Changes to Figure 32…………………………….......................................11
Changes to Figure 38…………………………….......................................12
Changes to Figure 46…………………………….......................................16
Changes to Figure 47…………………………….......................................16
Changes to Figure 49…………………………….......................................17
Updated Outline Dimensions…………………………………………..18
Changes to Ordering Guide…………………..........................................19
AD8627/AD8626/AD8625–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Table 1. @VS = 5 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.
ELECTRICAL CHARACTERISTICS
Table 2. @VS = ±13 V; VCM = 0 V; TA = 25°C, unless otherwise noted.
ABSOLUTE MAXIMUM RATINGS
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may
affect device reliability. Absolute maximum ratings apply at
25°C, unless otherwise noted.
Table 3. Stress Ratings
Table 4.
θJA is specified for worst case conditions when devices are soldered in circuit
boards for surface-mount packages.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
TYPICAL PERFORMANCE CHARACTERISTICS–AD8627/AD8626/AD8625
VOLTAGE(µV)
NUMBE
R OF AMP
IFIE
Figure 2. Input Offset Voltage
OFFSETVOLTAGE(µV/°C)
NUMBE
R OF AMP
IFIE
Figure 3. Offset Voltage Drift
VOLTAGE(µV)
NUMBE
R OF AMP
IFIE
Figure 4. Input Offset Voltage
OFFSETVOLTAGE(µV/°C)
NUMBER OF AMPLIFIERS
Figure 5. Offset Voltage Drift
VCM(V)
INP
T BIAS
CURRE
NT (pA)
Figure 6. Input Bias Current vs. VCM
VCM(V)
INP
T BIAS
CURRE
NT (pA)
Figure 7. Input Bias Current vs. VCM
TEMPERATURE(°C)
INP
T BIAS
CURRE
NT (pA)
Figure 8. Input Bias Current vs. Temperature
VCM(V)
INP
T BIAS
CURRE
NT (pA)
Figure 9. Input Bias Current vs. VCM
VCM(V)
T OFFSET VOLTA
GE (
Figure 10. Input Offset Voltage vs. VCM
VCM(V)
T OFFSET VOLTA
GE (
Figure 11. Input Offset Voltage vs. VCM
LOADRESISTANCE(kΩ)
10k
100k
10M
0.1110100
03023-B
OPEN-
OOP GAIN (
/V)Figure 12. Open-Loop Gain vs. Load Resistance
TEMPERATURE(°C)
OPEN-
OOP GAIN (
/mV)Figure 13. Open-Loop Gain vs. Temperature
OUTPUTVOLTAGE(V)
OFFSET VOLTAGE (Figure 14. Input Error Voltage vs. Output Voltage for Resistive Loads
OUTPUTVOLTAGEFROMSUPPLYRAILS(mV)
INPUT VOLTAGE (Figure 15. Input Error Voltage vs. Output Voltage within 300 mV of
Supply Rails
TOTALSUPPLYVOLTAGE(V)
QUIE
T CURRE
NT (Figure 16. Quiescent Current vs. Supply Voltage at Different Temperatures
LOADCURRENT(mA)
10k
0.0010.010.111010003023-B
OUTPUT VOLTAGE (mV)
Figure 17. Output Saturation Voltage vs. Load Current
LOADCURRENT(mA)
10k
0.0010.010.111010003023-B
OUTPUT VOLTAGE (mV)
Figure 18. Output Saturation Voltage vs. Load Current
FREQUENCY(Hz)
10k100k1M10M50M03023-B
GAIN (
SE (
egrees)
Figure 19. Open-Loop Gain and Phase Margin vs. Frequency
FREQUENCY(Hz)
10k100k1M10M50M03023-B
GAIN (
E (
egrees)
Figure 20. Open Loop Gain and Phase Margin vs. Frequency
FREQUENCY(Hz)
–1010k100k1M10M50M03023-B
GAIN (
Figure 21. Closed-Loop Gain vs. Frequency
FREQUENCY(Hz)
–1010k100k1M10M50M03023-B
GAIN (
Figure 22. Closed-Loop Gain vs. Frequency
FREQUENCY(Hz)
CMRR (dB)Figure 23. CMRR vs. Frequency
FREQUENCY(Hz)
CMRR (dB)Figure 24. CMRR vs. Frequency
FREQUENCY(Hz)
RR (dB)Figure 25. PSRR vs. Frequency
FREQUENCY(Hz)
RR (dB)Figure 26. PSRR vs. Frequency
FREQUENCY(Hz)
OUTFigure 27. Output Impedance vs. Frequency
FREQUENCY(Hz)
OUTFigure 28. Output Impedance vs. Frequency
Figure 29. No Phase Reversal
SETTLINGTIME(µs)
OUTPUT SW
ING (Figure 30. Output Swing and Error vs. Settling Time
CAPACITANCE(pF)
OVER
OOT (Figure 31. Small Signal Overshoot vs. Load Capacitance