AD8335ACPZ ,Quad Low Noise, Low Cost Variable Gain Amplifierapplications, the PrAs can be powered down, significantly of ×8 (18.06 dB) and accepts input signal ..
AD8335ACPZ-REEL7 ,Quad Low Noise, Low Cost Variable Gain AmplifierFEATURES Low noise preamplifier (PrA) Voltage noise = 1.3 nV/√Hz typical 61 60 59 58 53 55 52 51 49 ..
AD8342ACPZ-REEL7 ,LF to 500MHz Active Receive Mixerapplications that require converted to a single-ended signal through the use of a match-wide bandwi ..
AD8342ACPZ-REEL7 ,LF to 500MHz Active Receive MixerFEATURES FUNCTIONAL BLOCK DIAGRAM Broadband RF port: LF to 500 MHz VPDC PWDN EXRB COMMConversion ga ..
AD8343ARU ,DC-to-2.5 GHz High IP3 Active MixerAPPLICATIONSCellular Base StationsWireless LANSatellite ConvertersSONET/SDH RadioRadio LinksRF Inst ..
AD8343ARU-REEL7 ,DC-to-2.5 GHz High IP3 Active MixerSPECIFICATIONS(V = 5.0 V, T = 25C)BASIC OPERATING CONDITIONSS AParameter Conditions Figure Min Typ ..
ADP3301AR-3 ,High Accuracy anyCAP⑩ 100 mA Low Dropout Linear RegulatorSpecifications subject to change without notice.REV. 0–2–ADP3301ABSOLUTE MAXIMUM RATINGS* PIN FUNCT ..
ADP3301AR-3.2 ,High Accuracy anyCAP® 100 mA Low Dropout Linear RegulatorFEATURESFUNCTIONAL BLOCK DIAGRAMHigh Accuracy (Over Line and Load Regulationsat +258C): 60.8%ADP330 ..
ADP3301AR-3.3 ,High Accuracy anyCAP® 100 mA Low Dropout Linear RegulatorAPPLICATIONSCellular TelephonesNotebook, Palmtop Computers The ADP3301 operates with a wide input v ..
ADP3301AR5 ,High Accuracy anyCAP⑩ 100 mA Low Dropout Linear RegulatorFEATURESFUNCTIONAL BLOCK DIAGRAMHigh Accuracy (Over Line and Load Regulationsat +258C): 60.8%ADP330 ..
ADP3301AR-5 ,High Accuracy anyCAP⑩ 100 mA Low Dropout Linear RegulatorCHARACTERISTICS A IN IN OUT Parameter Symbol Conditions Min Typ Max UnitsOUTPUT VOLTAGE V V = Nom V ..
ADP3301AR-5-REEL ,High Accuracy anyCAP® 100 mA Low Dropout Linear RegulatorSpecifications subject to change without notice.REV. 0–2–ADP3301ABSOLUTE MAXIMUM RATINGS* PIN FUNCT ..
AD8335ACPZ-AD8335ACPZ-REEL7
Quad Low Noise, Low Cost Variable Gain Amplifier
Quad Low Noise, Low Cost
Variable Gain Amplifier
Rev. 0
FEATURES
Low noise preamplifier (PrA)
Voltage noise = 1.3 nV/√Hz typical
Current noise = 2.4 pA/√Hz typical
NF = 7 dB (RS = RIN = 50 Ω)
Single-ended input; VIN max = 625 mV p-p
Active input match
Input SNR (noise bandwidth = 20 MHz) = 92 dB
VGA
Differential output
VOUT max = 5 V p-p, RL = 500 Ω differential
Gain range (8 dB output gain step)
−10 dB to +38 dB—LO gain mode
−2 dB to +46 dB—HI gain mode
Accurate linear-in-dB gain control
PrA + VGA performance
−3 dB bandwidth of 70 MHz
Excellent overload performance
Supply: 5 V
Power consumption
95 mW/channel (380 mW total)
65 mW/channel (PrA off; 260 mW total)
Power-down
APPLICATIONS
Medical imaging (ultrasound, gamma cameras)
Sonar
Test and measurement
Precise, stable wideband gain control
FUNCTIONAL BLOCK DIAGRAM PIP1PMD1PMD2PIP2PON2POP2VIP2VIN2VIN3VIP3POP3PON3PIP3PMD3PMD4PIP4
PON
POP1
VIP1
VIN
SP12
HL1VOH1VOL1VGN1SL12VGN2VOL2VOH2VOH3VOL3VGN3SL34VGN4VOL4VOH4
PON
POP4
VIP4
VIN
SP34
HL304976-001
Figure 1.
GENERAL DESCRIPTION The AD8335 is a quad variable gain amplifier (VGA) with low
noise preamplifier intended for cost and power sensitive
applications. Each channel features a gain range 48 dB, fully
differential signal paths, active input preamplifier matching, and
user-selectable maximum gains of 46 dB and 38 dB. Individual
gain controls are provided for each channel.
The preamplifier (PrA) has a single-ended to differential gain
of ×8 (18.06 dB) and accepts input signals ≤ 625 mV p-p. PrA
noise is 1.2 nV/√Hz and the combined input referred voltage
noise of the PrA and VGA is 1.3 nV/√Hz at maximum gain.
Assuming a 20 MHz noise bandwidth (NBW), the Nyquist
frequency for a 40 MHz ADC, the input SNR is 92 dB. The
HILO pin optimizes the output SNR for 10-bit and 12-bit
ADCs with 1 V p-p or 2 V p-p full-scale (FS) inputs.
Channels 1 and 2 are enabled through the EN12 pin while
Channels 3 and 4 are enabled through the EN34 pin. For VGA
only applications, the PrAs can be powered down, significantly
reducing power consumption.
The AD8335 is available in a 64-lead lead frame chip scale
(9 mm × 9 mm) package for the industrial temperature range
of −40°C to +85°C.
TABLE OF CONTENTSSpecifications.....................................................................................3
Absolute Maximum Ratings............................................................5
ESD Caution..................................................................................5
Pin Configuration and Function Descriptions.............................6
Typical Performance Characteristics.............................................7
Test Circuits.....................................................................................15
Theory of Operation......................................................................16
Enable Summary.........................................................................16
Preamp.........................................................................................17
Noise.........................................................................................17
VGA..............................................................................................18
Optimizing the System Dynamic Range.............................18
Attenuator................................................................................18
Gain Control...........................................................................19
Output Stage...........................................................................19
VGA Noise..............................................................................19
Applications.....................................................................................20
Ultrasound...................................................................................20
Basic Connections......................................................................21
Preamp Connections..................................................................21
Input Overdrive..........................................................................23
Input Overload Protection....................................................23
Logic Inputs.................................................................................23
Common-Mode Pins.................................................................23
Driving ADCs.............................................................................23
Outline Dimensions.......................................................................24
Ordering Guide...........................................................................24
REVISION HISTORY
9/04—Revision 0: Initial Version
SPECIFICATIONS VS = 5 V, TA = 25°C, RL = 500 Ω, f = 5 MHz, CL = 10 pF, LO gain range (−10 dB to +38 dB), RFB = 249 Ω (PrA RIN = 50 Ω) and signal
voltage specified differential, per channel performance, dBm (50 Ω), unless otherwise noted.
Table 1.
ABSOLUTE MAXIMUM RATINGS
Table 2. Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
PIN 1
IDENTIFIER181920212223242526272829303132
PMD
PIP4
VPP4
PON
POP4
VIP4VIN
COM
VGN
VGN
SP3
SL3
HL34636261605958575655545352515049
PMD
PIP1VPP1PON
POP1VIP1VIN
COM
VGN
VGN
SP1
SL1
HL12471114
PMD2
PIP2
VPP2PON2
POP2
VIP2VIN2
COM2
COM3
VIN3VIP3
POP3
PON3VPP3
PIP3
PMD3
GND1
VOH1
VOL1VPV1
VPV2
VOL2VOH2
GND2
GND3
VOH3VOL3
VPV3
VPV4VOL4
VOH4
GND445423835
AD8335
TOP VIEW
(Not to Scale)04976-058
Figure 2. LFCSP Pin Configuration
Table 3. Pin Function Descriptions
TYPICAL PERFORMANCE CHARACTERISTICS VS = 5 V, TA = 25°C, RL = 500 Ω, f = 5 MHz, CL = 10 pF, LO gain range (−10 dB to +38 dB), RFB = 249 Ω (PrA RIN = 50 Ω) and signal
voltage specified differential, per channel performance, unless otherwise noted.
GAIN (
VGAIN (V)Figure 3. Gain vs. VGAIN at Three Temperatures (See Figure 49)
GAIN E
RROR (dB)
VGAIN (V)Figure 4. Gain Error vs. VGAIN at Three Temperatures (See Figure 49)
GAIN E
RROR (dB)
VGAIN (V)% OF UNITS
GAIN ERROR (dB)
Figure 6. Gain Error Histogram
% OF UNITS
CHANNEL-TO-CHANNEL GAIN MATCH (dB)0.10.20.30.40.50.60.70.80.91.0
Figure 7. Gain Match Histogram for VGAIN = 1 V and 2 V
% TOTAL
GAIN SCALING FACTOR20.419.920.020.120.220.3
% TOTAL
INTERCEPT (dB)Figure 9. Intercept Histogram
100k10M100M1G–20
GAIN (
FREQUENCY (Hz)Figure 10. Frequency Response for Various Values of VGAIN (See Figure 49)
100k10M100M1G
GAIN (
FREQUENCY (Hz)Figure 11. Frequency Response vs. Frequency for Various Values of VGAIN,
HILO = HI (See Figure 49)
100k10M100M1G
GAIN (
FREQUENCY (Hz)04976-011
–10Figure 12. Frequency Response for a Terminated and Unterminated
50 Ω Source (See Figure 49)
CROS
ALK (dB)
FREQUENCY (Hz)
100k10M1M100MFigure 13. Channel-to-Channel Crosstalk vs. Frequency for
Various Values of VGAIN
GROUP DELAY (ns)
FREQUENCY (Hz)
100k10M1M100M04976-013
Figure 14. Group Delay vs. Frequency
OFFSET VOLTA
GE (
VGAIN (V)Figure 15. Differential Output Offset Voltage vs. VGAIN at Three Temperatures
OFFSET VOLTA
GE (
VGAIN (V)04976-015
Figure 16. Absolute Offset vs. VGAIN at Pins VOHx and VOLx
Relative to Pins VCMx
100k10M1G
OUTP
UT IMP
DANCE
FREQUENCY (Hz)04976-016
Figure 17. Output Resistance at Pins VOHx and VOLx vs. Frequency
10M1G
INP
T IMP
DANCE
FREQUENCY (Hz)04976-017
100Figure 18. Preamp Input Resistance vs. Frequency for
Various Values of RFB
CROS
ALK (dB)
FREQUENCY (Hz)
100k10M1M100M–75j
–50j
–25j
Figure 19. Smith Chart S11 vs. Frequency, 100 kHz to 1 GHz
OUTP
UT RE
RRE
D NOIS
(nV
VGAIN (V)Figure 20. Output Referred Noise vs. VGAIN (See Figure 50)
FREQUENCY (MHz)
0.1101100INP
T RE
RRE
D NOIS
(nV
Figure 21. Short-Circuit Input Referred Noise vs. Frequency at Maximum Gain
(See Figure 50)
VGAIN (V)04976-021
ISE (
V/ HFigure 22. Input Referred Noise vs. VGAIN at Three Temperatures
(See Figure 50)
11001k0.1
SOURCE RESISTANCE (Ω)T N
ISE (
V/ H
Figure 23. Input Referred Noise vs. RS
NOIS
FIGURE
(dB)
VGAIN (V)04976-062
Figure 24. Noise Figure vs. VGAIN for RS = RIN = 50 Ω
DISTORTION (dBc)
2004006008001.0k1.2k1.4k1.6k1.8k2.0k
RLOAD (Ω)Figure 25. Harmonic Distortion vs. RLOAD (See Figure 50)
DISTORTION (
Bc)1020304050
CLOAD (pF)Figure 26. Harmonic Distortion vs. CLOAD (See Figure 53)
DISTORTION (
Bc)
VGAIN (V)Figure 27. HD2 vs. VGAIN at Three Frequencies, LO Gain (See Figure 53)
DISTORTION (
Bc)
VGAIN (V)Figure 28. HD3 vs. VGAIN at Three Frequencies, LO Gain (See Figure 53)
DISTORTION (
Bc)
VGAIN (V)Figure 29. HD2 vs. VGAIN at Three Frequencies, HI Gain (See Figure 53)
DISTORTION (
Bc)
VGAIN (V)Figure 30. HD3 vs. VGAIN at Three Frequencies, HI Gain (See Figure 53)
DISTORTION (
Bc)
VGAIN (V)Figure 31. HD2 vs. VGAIN at Three Output Voltages, LO Gain (See Figure 53)
DISTORTION (dBc)VGAIN (V)
Figure 32. HD3 vs. VGAIN, at Three Output Voltages, LO Gain (See Figure 53)
DISTORTION (dBc)
VGAIN (V)Figure 33. HD2 vs. VGAIN at Three Output Voltages, HI Gain, f = 1 MHz
(See Figure 53)
DISTORTION (
Bc)VGAIN (V)
Figure 34. HD3 vs. VGAIN at Three Output Voltages, HI Gain (See Figure 53)
3 (
Bc)
FREQUENCY (MHz)–1010100
Figure 35. IMD3 vs. Frequency
IP3 (
Bm)
VGAIN (V)Figure 36. Output Referred IP3 (OIP3) vs. VGAIN
T POWER
VGAIN (V)Figure 37. Input P1dB (IP1dB) vs. VGAIN
HARMONI
DI
ORTI
ON (dBc04976-039
Figure 38. Small Signal Pulse Response, LO Gain (See Figure 51)