AD8273 ,Very Low Distortion, Dual-Channel, Audio Difference AmplifierGENERAL DESCRIPTION The AD8273 is a low distortion, dual-channel amplifier with Table 1. Difference ..
AD8276ARZ , Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
AD8277ARZ , Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
AD827AQ ,High Speed, Low Power Dual Op AmpSPECIFICATIONS(@ T = +258C, unless otherwise noted)AAD827J AD827A/SModel Conditions V Min Typ Max M ..
AD827JN ,High Speed, Low Power Dual Op Ampspecifications are measured using high speed test equip-ment, approximately 1 second after power is ..
AD827JNZ , High Speed, Low Power Dual Op Amp
ADP3163JRU ,5-Bit Programmable 2-/3-Phase Synchronous Buck ControllerSPECIFICATIONS(VCC = 12 V, I = 150 A, T = 0C to 70C, unless otherwise noted.)REF AParameter Symb ..
ADP3163JRU-REEL ,5-Bit Programmable 2-/3-Phase Synchronous Buck ControllerSPECIFICATIONS(VCC = 12 V, I = 150 A, T = 0C to 70C, unless otherwise noted.)REF AParameter Symb ..
ADP3163JRUZ-REEL ,5-Bit Programmable 2-/3-Phase Synchronous Buck ControllerGENERAL DESCRIPTION The ADP3163 also uses a unique supplemental regulation tech-The ADP3163 is a hi ..
ADP3164JRU ,5-Bit Programmable 4-Phase Synchronous Buck ControllerSPECIFICATIONS (VCC = 12 V, I = 150 A, T = 0C to 70C, unless otherwise noted.)REF AParameter Sym ..
ADP3164JRU ,5-Bit Programmable 4-Phase Synchronous Buck ControllerGENERAL DESCRIPTION The ADP3164 also uses a unique supplemental regulation tech-The ADP3164 is a hi ..
ADP3166 ,5-Bit Programmable 2-, 3-, 4-Phase Synchronous Buck ControllerSPECIFICATIONS (V = 12 V, FBRTN = GND, T = 0C to 85C, unless otherwise noted.)CC AParameter Symbo ..
AD8273
Very Low Distortion, Dual-Channel, Audio Difference Amplifier
ANALOG
DEVICES
Very Low Distortion, Dual-Channel,
High Precision Difference Amplifier
A08273
FEATU RES
14000 V HBM ESD
Very low distortion
0.00025% THD + N (20 kHz)
0.0015% THD + N (100 kHz)
Drives 600 n loads
Two gain settings
Gain of 1/2 (-6 dB)
Gain of 2 (+6 dB)
0.05% maximum gain error
10 ppml°C maximum gain drift
Excellent ac specifications
20 V/ps minimum slew rate
800 ns to 0.01% settling time
High accuracy dc performance
77 dB minimum CMRR
700 pV maximum offset voltage
14-lead SOIC package
Supply current: 2.5 mA maximum per channel
Supply range: $2.5 V to :18 V
APPLICATIONS
ADC drivers
High performance audio
Instrumentation amplifier building blocks
Level translators
Automatic test equipment
Sine/cosine encoders
GENERAL DESCRIPTION
The AD8273 is a low distortion, dual-channel amplifier with
internal gain setting resistors. With no external components, it
can be configured as a high performance difference amplifier
(G = 1/2 or 2), inverting amplifier (G = 1/2 or 2), or noninverting
amplifier (G = 1% or 3).
The AD8273 operates on both single and dual supplies and only
requires 2.5 mA maximum supply current for each amplifier. It
is specified over the industrial temperature range of -40oC to
+85''C and is fully RoHS compliant.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
tesponsibileyisassumed byAnalog Devicesfor its use. nor%ranyinhingementsofpatentsurother
rights of third partiesthat may Iesultfrom itsusa Spedfiotions subject to thangewithout notice No
license is granted by implication or otherwise under any patent or patent rights of Analog Davies.
Trademarks and registered trademarks arethe pmpertyof their respective owners.
FUNCTIONAL BLOCK DIAGRAM
06951—001
Figure l.
Table l. Difference Amplifiers by Category
Low High Single-Supply Single-Supply
Distortion Voltage Unidirectional Bidirectional
AD8270 AD628 AD8202 AD8205
AD8273 AD629 AD8203 AD8206
AD8274 AD8216
One Technology Way, P.0. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781 .329.4700
Fax: 781 .461.3113 ©2008-20q 0 Analog Devices, Inc. All rights reserved.
A08273
TABLE OF CONTENTS
Features m............................................................................................. 1
Applications _...................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description P........................................................................ 1
Revision History F.............................................................................. 2
Specifications w.................................................................................... 3
Absolute Maximum Ratings _........................................................... 4
Maximum Power Dissipation _.................................................... 4
ESD Caution _................................................................................. 4
REVISION HISTORY
8/ IO-Rev. A to Rev. B
Changes to Data Sheet Title _........................................................... 1
Changes to THD + Noise (THD + N) Parameter, Gain
Nonlinearity Parameter, and Offset vs. Power Supply Parameter,
Table 2 ................................................................................................ 3
Changed -12A Pin to ANA Pin, +12A Pin to +INA Pin, +12B
Pin to INB Pin, -12B Pin to -INB Pin, +6B Pin to REFB Pin,
-6B Pin to SENSEB Pin, -6A Pin to SENSEA Pin, and +6A Pin
to REFA Pin Throughout _............................................................... 5
Changes to Figure 3 and Table 4 _.................................................... 5
1/09-Rev. 0 to Rev. A
Changes to Product Title, Features Section, and Applications
Section _............................................................................................... 1
Added Human Body Model (HBM) ESD Rating Parameter,
Table 3 F............................................................................................... 4
Changes to Figure 6 to Figure 9.... ... 6
Changes to Figure 10 to Figure 12 .................................................. 7
Changes to Figure 18 P....................................................................... 8
Deleted Figure 31; Renumbered Sequentially ............................ 10
Added Figure 31 to Figure 33; Renumbered Sequentially ........ 10
Added Figure 34 to Figure 36 _....................................................... ll
1/08-Revision 0: Initial Version
Pin Configuration and Function Descriptions .............................. 5
Typical Performance Characteristics .............................................. 6
Theory of Operation ...................................................................... 12
Configurations _........................................................................... 12
Power Supplies B........................................................................... 12
Outline Dimensions w...................................................................... 14
Ordering Guide P......................................................................... 14
Rev. B l Page 2of 16
A08273
SPECIFICATIONS
Vs = :15 V, VREF = 0 V, TA = 25°C, G = 1/2, RL = 2 k0, unless otherwise noted.
Table 2.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
Bandwidth 20 MHz
Slew Rate 20 V/ps
Settling Time to 0.1% 10 V step on output, CL = 100 pF 670 750 ns
Settling Time to 0.01% 10 V step on output, CL = 100 pF 750 800 ns
Channel Separation f=1 kHz 130 dB
NOISE/DISTORTION‘
THD + Noise (THD + N) f= 1 kHz, VOUT = 10 V p-p, 600 fl load 0.00025 %
Noise Floor, RTO2 20 kHz BW -106 dBu
Output Voltage Noise (Referred to Output) f= 20 Hz to 20 kHz 3.5 pV rms
f=1 kHz 26 nV/VHz
Gain Error 0.05 %
Gain Drift -40oC to +85°C 2 10 ppm/°C
Gain Nonlinearity VOUT = 10 V p-p, 600 n load 2 ppm
INPUT CHARACTERISTICS
Offsets Referred to output 100 700 pV
vs. Temperature -40''C to +85°C 3 pV/°C
vs. Power Supply Vs = t2.5 V to t18 V 2 5 WIN
Common-Mode Rejection Ratio VCM = :40 V, Rs = 0 n, referred to input 77 86 dB
Input Voltage Range' -3Vs + 4.5 +3Vs - 4.5 V
Impedance'
Differential VCM = 0 V 36 k0
Common Mode6 9 k0
OUTPUT CHARACTERISTICS
Output Swing -Vs + 1.5 +Vs - 1.5 V
Short-Circuit Current Limit Sourcing 100 mA
Sinking 60 mA
Capacitive Load Drive G 21/2 200 pF
G = 2 1200 pF
POWER SUPPLY
Supply Current (per Amplifier) 2.5 mA
TEMPERATU RE RANGE
Specified Performance -40 +85 ''C
l Includes amplifier voltage and current noise, as well as noise of internal resistors.
2 dBu = 20 log N rms/0.7746).
3 Includes input bias and offset current errors.
4 May also be limited by absolute maximum input voltage or by the output swing. See the Absolute Maximum Ratings section and Figure 9 through Figure 12 for
details.
5 Internal resistors are trimmed to be ratio matched but have 120% absolute accuracy.
6 Common mode is calculated looking into both inputs. Common-mode impedance looking into only one input is 18 k0.
Rev. B l Page 30f 16
A08273
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage t18V
Output Short-Circuit Current Observe
Voltage at Any Input Pin
Differential Input Voltage
Current into Any Input Pin
Human Body Model (HBM) ESD Rating
Storage Temperature Range
Specified Temperature Range
Thermal Resistance
Package Glass Transition Temperature (Tc)
derating curve
i4000 V
-65''C to +130°C
-40oC to +85°C
105°CAN
36°C/W
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
MAXIMUM POWER DISSIPATION
The maximum safe power dissipation for the AD8273 is limited
by the associated rise in junction temperature (TO on the die. At
approximately 150°C, which is the glass transition temperature,
the plastic changes its properties. Even temporarily exceeding
this temperature limit may change the stresses that the package
exerts on the die, permanently shifting the parametric performance
of the amplifiers. Exceeding a temperature of 150°C for an
extended period can result in a loss of functionality.
The AD8273 has built-in, short-circuit protection that limits the
output current to approximately 100 mA (see Figure 2 for more
information). While the short-circuit condition itself does not
damage the part, the heat generated by the condition can cause
the part to exceed its maximum junction temperature, with
corresponding negative effects on reliability.
2.0 ' ,
TJMAX=150°C
"ss, eJA=1os°c1w
ca) 0.8 's,
n. . 's,
Q 0.4 's
s 'ss,
-50 -25 0 25 50 75 100 125
AMBIENT TEMPERATURE CC)
05981—043
Figure 2. Maximum Power Dissipation vs. Ambient Temperature
ESD CAUTION
ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features
patented or proprietary protection circuitry, damage
ftisgy may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.
Rev. B l Page4of 16
A08273
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Table 4. Pin Function Descriptions
NC E E REFA
-INA E E OUTA
+INA E AD8273 E SENSEA
-Vs E TOP VIEW E +vs
+INB E (Not to Scale) E SENSEB
-INB E E OUTB
NC E E REFB
NC = NO CONNECT
Figure 3. Pin Configuration
Pin No. Mnemonic Description
l, 7 NC No Connect.
2 -INA The 12 k0 resistor connects to the negative terminal of Op Amp A.
3 +INA The 12 kfl resistor connects to the positive terminal of Op Amp A.
4 -Vs Negative Supply.
5 +INB The 12 k0 resistor connects to the positive terminal of Op Amp B.
6 -INB The 12 k0 resistor connects to the negative terminal of Op Amp B.
8 REFB The 6 k0 resistor connects to the positive terminal of Op Amp B.
9 OUTB Op Amp B Output.
10 SENSEB The 6 k0 resistor connects to the negative terminal of Op Amp B.
11 +Vs Positive Supply.
12 SENSEA The 6 k0 resistor connects to the negative terminal of Op Amp A.
13 OUTA Op Amp A Output.
14 REFA The 6 k0 resistor connects to the positive terminal of Op Amp A.
Rev. B l Page 5 of 16
A08273
TYPICAL PERFORMANCE CHARACTERISTICS
Vs = iIS V, TA = 25°C, G = 1/2, difference amplifier configuration, unless otherwise noted.
N: 1641 - -
100 MEAN: -9.5 = -
SD:228.4 _ - 300 "
- +2.9"/
S" 200 "
3: ,,,,W'''''
, so [i': /
E o -,=""
E o /’
F "-'"
m -100 /4 I
20 / -1.7pVPC
H- Thm r'),',, REPRESENTATIVE SAMPLES
_ _ _ _ _ _ _ g -300 ' ' '
-500 -250 o 250 500 F,' -50 -30 -10 10 30 50 70 90 110 130 ,
Voso t15V (pVAO TEMPERATURE CC)
Figure 4. Typical Distribution of System Offset Voltage, Figure 7. System Offset vs. Temperature, Normalized at25°C,
G = w, Referred to Output Referred to Output
N: 1649 y
MEAN: Ah59 -
SD: 37.3 - 100
100 - - _ 50 "s,,
- g "s,
so a o "ss
' - o "ss,
I so ttt "ss.
- Lu -50 "'s
- Q "ss
4o © _
20 M50
REPRESENTATIVE SAMPLES
o rl'rm I I 1 -200 I I I . I
M50 -100 -50 o 50 100 150 g -A5 -30 -15 o 15 30 45 60 75 90 105 120
CMRR MW (pV/V) ii,'; TEMPERATURE (°C)
Figure 5. Typical Distribution of CMRR, G = V2, Referred to Input Figure 8. Gain Error vs. Temperature, Normalized at 25°C
20 30 I
ov, +25v G = 'h
IO +0.09uVN/E g Vs = :15v
o,,,,,,-''''''' d IO _13.5v, +11.5v +13.5v, +11.5v
F 10 -
S // g
3 5 -..--"''' v - g 0
ttt . . '
g w,,,..----"'"'' "Y"'""'" s
o 0 -''' E
g -10 -13.5V, M1.5V +13.5v, -11.5V
-10 g -20
-15 ov 25V
REPRESENTATIVE SAMPLES 30 ' ,
-50 -30 -10 10 30 50 70 90 110 130 g -15 -10 -5 0 5 IO 15
TEMPERATURE CC) t,'i',, OUTPUT VOLTAGE (V)
Figure 6. CMRR vs. Temperature, Normalized at 25°C Figure 9. Input Common-Mode Voltage vs. Output Voltage,
Gain = w, $15 VSuppIies
Rev. B l Page6of 16
A08273
INPUT COMMON-MODE VOLTAGE (V) 'NPUT COMMON‘M°DE VOLTAGE (V)
INPUT COMMON-MODE VOLTAGE (V)
-3.5V, +15.sv G A
15 -'""--....... vs = MN
"car----- +3.5v, +8.8v
10 l -'"-a.....
-1.0V, +6.2v VS = 22.5V
5 +1.ov, +4.2v
-1.OV, -4.OV
-5 +1.0, -6.0V
""---....-,
"''---....
""""--........,..
- - - . , _7v
15 3.5V -8 +3.51t,-t5.51t
-20-4 -3 -2 _1 o 1 2 3 4
OUTPUT VOLTAGE (V)
Figure 10. Input Common-Mode Voltage vs. Output Voltage,
Gain = V2, :5 Vand $2.5 VSupplies
0V, +20.85V
-13.5V, +11.5V
-13.5V, -11.5V
5V, +11.5V
+13.5v, -MdiV
0V, -20.85V
M 5 -1 0 -5 0 5
OUTPUT VOLTAGE (V)
Figure 1 1. Input Common-Mode Voltage vs. Output Voltage,
Gain = 2, :15 VSupplies
-3.5V, +6.9v 'ts = 2
---- vs = 15v I
"'"'-...
s +3.5v, +5.2V-
''""'---.-.,...
-1.OV, +2.7v Vs = Pw
2 +1.ov, +2.2v
-2 -1.0V, -2.0V _
+1.0, -2.6V
"""--...
""--..
-6 - -3.5V, -5.2V "'""--....-_,
"m"-----.-....
+3.5v, -6.9V
-8-4 -3 -2 -1 o 1 2 3 4
OUTPUT VOLTAGE (V)
Figure 12. Input Common-Mode Voltage vs. Output Voltage,
Gain = 2, i5 Vand :25 VSupplies
POWER SUPPLY REJECTION (dB)
PQSJI'MF- ".533.
EGATIVE PS RR
10 100 1k 10k
FREQUENCY (Hz)
Figure 13. Power Supply Rejection vs. Frequency, G = z, Referred to Output
Rev. B l Page 70f 16
MAXIMUM OUTPUT VOLTAGE W 31-3))
GAIN (dB)
M5V SUPPLY
1k 10k 100k
FREQUENCY (Hz)
Figure M. Maximum Output Voltage vs. Frequency
100 1k 10k 100k 1M
FREQUENCY(Hz)
Figure 15. Gain vs. Frequency
3 06951-007