IC Phoenix
 
Home ›  AA5 > ACS108-ACS108-5SA-TR,AC LINE SWITCH
ACS108-ACS108-5SA-TR Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
ACS108STMN/a478avaiAC LINE SWITCH
ACS108-5SA-TR |ACS1085SATRSTN/a8202avaiAC LINE SWITCH


ACS108-5SA-TR ,AC LINE SWITCHFEATURESTO-92n Blocking voltage: V /V = 500VDRM RRM ACS108-5SAn Clamping voltage: V = 600VCLn Nomin ..
ACS108-5SN ,AC LINE SWITCHFEATURESTO-92n Blocking voltage: V /V = 500VDRM RRM ACS108-5SAn Clamping voltage: V = 600VCLn Nomin ..
ACS1086S ,Overvoltage protected AC switchAbsolute maximum ratings (T = 25 °C, unless otherwise specified)ambSymbol Parameter Value UnitT = 6 ..
ACS1-086S ,Overvoltage protected AC switchElectrical characteristics (T = 25 °C, unless otherwise specified)jSymbol Test conditions Quadrant ..
ACS108-6S ,Overvoltage protected AC switchFeatures■ Needs no external protection snubber or varistor■ Enables equipment to meet IEC 61000-4-5 ..
ACS108-6SA ,Overvoltage protected AC switchAbsolute maximum ratings (T = 25 °C, unless otherwise specified)ambSymbol Parameter Value UnitT = 6 ..
AD8031ARZ-REEL , 2.7 V, 800 muA, 80 MHz Rail-to-Rail I/O Amplifiers
AD8031ARZ-REEL , 2.7 V, 800 muA, 80 MHz Rail-to-Rail I/O Amplifiers
AD8031ARZ-REEL7 , 2.7 V, 800 muA, 80 MHz Rail-to-Rail I/O Amplifiers
AD8031BR ,2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiersapplications,Circuit Diagramfrom battery-operated systems with large bandwidth requirementsFigure 1 ..
AD8031BR-REEL ,2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O AmplifiersCHARACTERISTICS = 10 kW +0.05 +0.02 +0.05 +0.02 VOutput Voltage Swing Low RLOutput Voltage Swing Hi ..
AD8032AN ,2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O AmplifiersSPECIFICATIONS +2.7 V Supply (@ T = +258C, V = +2.7 V, R = 1 kV to +1.35 V, R = 2.5 kV unless other ..


ACS108-ACS108-5SA-TR
AC LINE SWITCH
ACS108-5Sx
AC LINE SWITCHn Blocking voltage: VDRM /VRRM= 500V Clamping voltage: VCL= 600V Nominal current: IT(RMS)= 0.8A Gate triggering current: IGT <10mA Triggering currentis sourcedby the gate Switch integrated driver Drive reference COM connectedto the SOT-223
tab
FEATURES

The ACS108 belongsto the AC line switches built
around the ASD™ concept. This high performance
deviceis ableto controlan 0.8A load device.
The ACS™ switch embedsa high voltage
clamping structure to absorb the inductive
turn-off energy anda gate level shifter driverto
separate the digital controller from the main
switch.Itis triggered witha negative gate current
flowing outof the gate pin.
For further technical information, please referto
AN1172 the Application note.
DESCRIPTION
Needsno external overvoltage protection. Enables the equipmentto meet IEC61000-4-5
standard. Allows straightforward connection of several
SOT-223 deviceson the same cooling pad. Reduces the switch component count by upto
80%. Interfaces directly with the microcontroller. Eliminates any stressing gate kick back on the
microcontroller.
BENEFITS
FUNCTIONAL DIAGRAM

ASD™ Switch Family AC on-off static switching in appliance &
industrial control systems Driveof low power high inductiveor resistive
loads like: relay, valve, solenoid, dispenser pump, fan, micro-motor low power lamp bulb, door lock
MAIN APPLICATIONS

ASD andACS area trademarksof STMicroelectronics.
ACS108-5Sx
Note 1:according
totest describedby IEC61000-4-5 standard& Figure3.
ABSOLUTE RATINGS
(limiting values)
SWITCH GATE CHARACTERISTICS
(maximum values)
(*) :with 5cm2 copper (e=35μm) surface undertab
THERMAL RESISTANCES
ELECTRICAL CHARACTERISTICS

For either positiveor negative polarityof pin OUT voltage respectto pin COM voltage excepted note3
ACS108-5Sx
The ACS108 deviceis well adaptedto washing machines, dishwashers, tumble driers, refrigerators, water
heaters and cookware.It has been especially designedto switch ON and OFF low power loads suchas
solenoids, valves, relays, dispensers, micro-motors, fans, pumps, door locks and low power lamp bulbs.
Pin COM: Common drive referenceto connectto the power line neutral
PinG: Switch Gate inputto connectto the digital controller through the resistor
Pin OUT: Switch Outputto connectto the Load
The ACS™ switchis triggered witha negative gate current flowing outof the gate pinG.It canbe drivendi-
rectlyby the digital controller througha resistoras shownon the typical application diagram. No protection
devices are required between the gates and common terminals.
The SOT-223 version allows several ACS108 devicesto be connected on the same cooling PCB pad
whichis the COM pin: this cooling pad canbe then reduced, and the printed circuit layoutis simplified. appliance systems, the ACS108 switch intendsto drive low power loadin full cycle ON/ OFF mode. The
turnoff commutation characteristicsof these loads canbe classifiedin3 groupsas shownin Table1.
Thankstoits thermal and turn-off commutation characteristics, the ACS108 switch drivesa load, suchas
door lock, lamp, relay, valve and micro motor,upto 0.2A without any turn-off aid circuit. Switchingoff the
ACS within one full AC line cycle will extendits currentupto 0.8Aon resistive load. LINE SWITCH BASIC APPLICATION
Table1:
Load grouping versus their turnoff commutation requirement (230V AC applications).
TYPICAL APPLICATION DIAGRAM
ACS108-5Sx
Fig.3:
Overvoltage ruggednesstest circuit forresistive
and inductive loads according to IEC61000-4-5
standard.= 150Ω,L=5μH, VPP= 2kV.
Fig.4:
Current and voltageof the ACS™ during
IEC61000-4-5 standard test witha 150Ω -10μH
load& VPP= 2kV.
Fig.1:
Turn-off operationof the ACS108 switch
withan electro valve: waveformof the gate current
IG, pin OUT current IOUT& voltage VOUT.
Fig.2:
ACS108 switch static characteristic. the endof the last conduction half-cycle, the load current reaches the holding current levelIH, and the
ACS™ switch turns off. Becauseof the inductanceLof the load, the current flows through the avalanche
diodeD and decreases linearlyto zero. During this time, the voltage across the switchis limitedto the
clamping voltage VCL.
The energy storedin the inductanceof the load dependson theholding currentIH and the inductance (upto H);it can reach about20 mJ andis dissipatedin the clamping section thatis especially designedfor that
purpose.
HIGH INDUCTIVE SWITCH-OFF OPERATION

The ACS108 switchis ableto safely withstand the AC line transient voltages eitherby clamping the low en-
ergy spikesorby breaking over under high energy shocks.
The test circuitin Figure4is representativeof the final ACS™ application andis also usedto stress the
ACS™ switch accordingto the IEC61000-4-5 standard conditions. Thanksto the load, the ACS™ switch
withstands the voltage spikesupto2kV above the peak line voltage.It will break over safely evenon resis-
tive load where the turn-on current riseis highas shownin Figure4. Such non-repetitive testing canbe
done10 timeson each AC line voltage polarity. LINE TRANSIENT VOLTAGE RUGGEDNESS
ACS108-5Sx
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.0
P(W)
Fig.5:
Maximum power dissipation versus RMS
on-state current. 10 20 30 40 50 60 70 80 90 100 110 120130
IT(RMS)(A)
Fig. 6: RMS on-state current versus ambient
temperature.
1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 5E+20.01
Zth(j-a) / Rth(j-a)
Fig. 7-1: Relative variationof thermal impedance
junction to ambient versus pulse duration
(ACS108-5SA) (TO-92).
-40 -20 0 20 40 60 80 100 120 1400.0
IGT [Tj] / IGT [Tj=25°C]
Fig.8: Relative variationof gate trigger current
versus junction temperature.
-40 -20 0 20 40 60 80 100 120 1400.0
IH,IL [Tj] / IH,IL [Tj=25°C]
Fig.9: Relative variationof holding and latching
current versus junction temperature.
1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 5E+20.01
Zth(j-a) / Rth(j-a)
Fig. 7-2: Relative variationof thermal impedance
junction to ambient versus pulse duration
(ACS108-5SN) (SOT-223).
ACS108-5Sx 10 100 10000
ITSM(A)
Fig. 10:
Non repetitive surge peak on-state current
versus numberof cycles.
0.01 0.10 1.00 10.000.1
ITSM(A),I²t(A²s)
Fig. 11: Non-repetitive surge peak on-state
current fora sinusoidal pulse with width tp<10ms,
and corresponding valueofI2t.
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.60.01
ITM(A)
Fig. 12: On-state characteristics (maximum values).
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00
Rth(j-a) (°C/W)
Fig. 13: Thermal resistance junctionto ambient
versus copper surface under tab (Epoxy printed
circuit board FR4, copper thickness: 35μm). 10 20 30 40 50 60 70 80 90 100 110 1200.0
(dI/dt)c [Tj] / (dI/dt)c [Tj=110°C]
Fig. 14: Relative variationof critical (dI/dt)c versus
junction temperature.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED